Robust Stochastically-Descending Unrolled Networks
- URL: http://arxiv.org/abs/2312.15788v1
- Date: Mon, 25 Dec 2023 18:51:23 GMT
- Title: Robust Stochastically-Descending Unrolled Networks
- Authors: Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro
- Abstract summary: Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
- Score: 85.6993263983062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unrolling, or unfolding, is an emerging learning-to-optimize method that
unrolls a truncated iterative algorithm in the layers of a trainable neural
network. However, the convergence guarantees and generalizability of the
unrolled networks are still open theoretical problems. To tackle these
problems, we provide deep unrolled architectures with a stochastic descent
nature by imposing descending constraints during training. The descending
constraints are forced layer by layer to ensure that each unrolled layer takes,
on average, a descent step toward the optimum during training. We theoretically
prove that the sequence constructed by the outputs of the unrolled layers is
then guaranteed to converge for unseen problems, assuming no distribution shift
between training and test problems. We also show that standard unrolling is
brittle to perturbations, and our imposed constraints provide the unrolled
networks with robustness to additive noise and perturbations. We numerically
assess unrolled architectures trained under the proposed constraints in two
different applications, including the sparse coding using learnable iterative
shrinkage and thresholding algorithm (LISTA) and image inpainting using
proximal generative flow (GLOW-Prox), and demonstrate the performance and
robustness benefits of the proposed method.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Structure-Preserving Network Compression Via Low-Rank Induced Training Through Linear Layers Composition [11.399520888150468]
We present a theoretically-justified technique termed Low-Rank Induced Training (LoRITa)
LoRITa promotes low-rankness through the composition of linear layers and compresses by using singular value truncation.
We demonstrate the effectiveness of our approach using MNIST on Fully Connected Networks, CIFAR10 on Vision Transformers, and CIFAR10/100 and ImageNet on Convolutional Neural Networks.
arXiv Detail & Related papers (2024-05-06T00:58:23Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Improved Model based Deep Learning using Monotone Operator Learning
(MOL) [25.077510176642807]
MoDL algorithms that rely on unrolling are emerging as powerful tools for image recovery.
We introduce a novel monotone operator learning framework to overcome some of the challenges associated with current unrolled frameworks.
We demonstrate the utility of the proposed scheme in the context of parallel MRI.
arXiv Detail & Related papers (2021-11-22T17:42:27Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Practical Convex Formulation of Robust One-hidden-layer Neural Network
Training [12.71266194474117]
We show that the training of a one-hidden-layer, scalar-output fully-connected ReLULU neural network can be reformulated as a finite-dimensional convex program.
We derive a convex optimization approach to efficiently solve the "adversarial training" problem.
Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods.
arXiv Detail & Related papers (2021-05-25T22:06:27Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.