Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits!
- URL: http://arxiv.org/abs/2312.15813v1
- Date: Mon, 25 Dec 2023 21:25:55 GMT
- Title: Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits!
- Authors: Tirth Patel, Fred Lu, Edward Raff, Charles Nicholas, Cynthia Matuszek,
James Holt
- Abstract summary: Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
- Score: 51.668411293817464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industry practitioners care about small improvements in malware detection
accuracy because their models are deployed to hundreds of millions of machines,
meaning a 0.1\% change can cause an overwhelming number of false positives.
However, academic research is often restrained to public datasets on the order
of ten thousand samples and is too small to detect improvements that may be
relevant to industry. Working within these constraints, we devise an approach
to generate a benchmark of configurable difficulty from a pool of available
samples. This is done by leveraging malware family information from tools like
AVClass to construct training/test splits that have different generalization
rates, as measured by a secondary model. Our experiments will demonstrate that
using a less accurate secondary model with disparate features is effective at
producing benchmarks for a more sophisticated target model that is under
evaluation. We also ablate against alternative designs to show the need for our
approach.
Related papers
- PromptSAM+: Malware Detection based on Prompt Segment Anything Model [8.00932560688061]
We propose a visual malware general enhancement classification framework, PromptSAM+', based on a large visual network segmentation model.
Our experimental results indicate that 'PromptSAM+' is effective and efficient in malware detection and classification, achieving high accuracy and low rates of false positives and negatives.
arXiv Detail & Related papers (2024-08-04T15:42:34Z) - Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
We present a machine learning-based system for detecting obfuscated malware that is highly accurate, lightweight and interpretable.
Our system is capable of detecting 15 malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the Spyware family.
The Transponder-focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 microseconds per file.
arXiv Detail & Related papers (2024-07-07T12:41:40Z) - Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative Matrix Factorization with Automatic Model Selection [34.7994627734601]
We propose a novel hierarchical semi-supervised algorithm, which can be used in the early stages of the malware family labeling process.
With HNMFk, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us to classify malware families under conditions of extreme class imbalance.
Our solution can perform abstaining predictions, or rejection option, which yields promising results in the identification of novel malware families.
arXiv Detail & Related papers (2023-09-12T23:45:59Z) - Multifamily Malware Models [5.414308305392762]
We conduct experiments based on byte $n$-gram features to quantify the relationship between the generality of the training dataset and the accuracy of the corresponding machine learning models.
We find that neighborhood-based algorithms generalize surprisingly well, far outperforming the other machine learning techniques considered.
arXiv Detail & Related papers (2022-06-27T13:06:31Z) - Leveraging Uncertainty for Improved Static Malware Detection Under
Extreme False Positive Constraints [21.241478970181912]
We show how ensembling and Bayesian treatments of machine learning methods for static malware detection allow for improved identification of model errors.
In particular, we improve the true positive rate (TPR) at an actual realized FPR of 1e-5 from an expected 0.69 for previous methods to 0.80 on the best performing model class on the Sophos industry scale dataset.
arXiv Detail & Related papers (2021-08-09T14:30:23Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.