AMUN: Adversarial Machine UNlearning
- URL: http://arxiv.org/abs/2503.00917v2
- Date: Thu, 01 May 2025 15:21:54 GMT
- Title: AMUN: Adversarial Machine UNlearning
- Authors: Ali Ebrahimpour-Boroojeny, Hari Sundaram, Varun Chandrasekaran,
- Abstract summary: Adversarial Machine UNlearning (AMUN) outperforms prior state-of-the-art (SOTA) methods for image classification.<n>AMUN lowers the confidence of the model on the forget samples by fine-tuning the model on their corresponding adversarial examples.
- Score: 13.776549741449557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning, where users can request the deletion of a forget dataset, is becoming increasingly important because of numerous privacy regulations. Initial works on ``exact'' unlearning (e.g., retraining) incur large computational overheads. However, while computationally inexpensive, ``approximate'' methods have fallen short of reaching the effectiveness of exact unlearning: models produced fail to obtain comparable accuracy and prediction confidence on both the forget and test (i.e., unseen) dataset. Exploiting this observation, we propose a new unlearning method, Adversarial Machine UNlearning (AMUN), that outperforms prior state-of-the-art (SOTA) methods for image classification. AMUN lowers the confidence of the model on the forget samples by fine-tuning the model on their corresponding adversarial examples. Adversarial examples naturally belong to the distribution imposed by the model on the input space; fine-tuning the model on the adversarial examples closest to the corresponding forget samples (a) localizes the changes to the decision boundary of the model around each forget sample and (b) avoids drastic changes to the global behavior of the model, thereby preserving the model's accuracy on test samples. Using AMUN for unlearning a random $10\%$ of CIFAR-10 samples, we observe that even SOTA membership inference attacks cannot do better than random guessing.
Related papers
- Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric [0.09363323206192666]
Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems.<n>We propose a standardized approach for assessing data similarity by constructing a supervised autoencoder for generalizability estimation (SAGE)<n>We show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets.
arXiv Detail & Related papers (2025-02-22T19:21:50Z) - Enhancing Sample Selection by Cutting Mislabeled Easy Examples [62.13094877228772]
We show that mislabeled examples correctly predicted by the model early in the training process are particularly harmful to model performance.<n>We propose Early Cutting, which employs the model's later training state to re-select the confident subset identified early in training.
arXiv Detail & Related papers (2025-02-12T09:12:45Z) - Realistic Image-to-Image Machine Unlearning via Decoupling and Knowledge Retention [1.795561427808824]
We argue that the machine learning model performs fairly well on unseen data.<n>We propose a framework which decouples the model parameters with gradient ascent.<n>We also provide $(epsilon, delta)$-unlearning guarantee for model updates with gradient ascent.
arXiv Detail & Related papers (2025-02-06T17:46:49Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
Understanding memorisation in language models has practical and societal implications.
Memorisation is the causal effect of training with an instance on the model's ability to predict that instance.
This paper proposes a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics.
arXiv Detail & Related papers (2024-06-06T17:59:09Z) - Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important.<n>In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.<n>We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
This paper proposes a one-for-more training objective that takes the generalization ability of selected samples as a loss function.
Our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework.
arXiv Detail & Related papers (2020-12-10T06:37:09Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
In image classification, sample-wise inconsistencies appear as "negative flips"
A new model incorrectly predicts the output for a test sample that was correctly classified by the old (reference) model.
We propose a simple approach for PC training, Focal Distillation, which enforces congruence with the reference model.
arXiv Detail & Related papers (2020-11-18T09:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.