Aligning Large Language Models with Human Preferences through Representation Engineering
- URL: http://arxiv.org/abs/2312.15997v3
- Date: Wed, 3 Jul 2024 05:21:02 GMT
- Title: Aligning Large Language Models with Human Preferences through Representation Engineering
- Authors: Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan Zhang, Xiaoqing Zheng, Xuanjing Huang,
- Abstract summary: Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM.
This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement.
- Score: 41.81020951061438
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involves employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation.Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM, and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement.Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF's versatility in accommodating diverse human preferences shows its potential for advancing LLM performance.
Related papers
- Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
We introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM)
Our approach significantly improves the accuracy of the RM on established human preference datasets.
arXiv Detail & Related papers (2024-10-02T13:24:56Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
A reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs)
Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback.
arXiv Detail & Related papers (2024-06-06T15:23:30Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
Training large language models (LLMs) to serve as effective assistants for humans requires careful consideration.
A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences.
In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals.
arXiv Detail & Related papers (2024-04-12T15:54:15Z) - CLHA: A Simple yet Effective Contrastive Learning Framework for Human Alignment [42.71324708567498]
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences.
We present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly.
arXiv Detail & Related papers (2024-03-25T11:37:15Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
Reinforcement Learning with Human Feedback (RLHF) has been demonstrated to significantly enhance the performance of large language models (LLMs)
We propose another alternative approach: Reinforcement Learning with Generative Adversarial Feedback (RLGAF) to RLHF and SFT.
arXiv Detail & Related papers (2023-05-09T17:06:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.