Secrets of RLHF in Large Language Models Part II: Reward Modeling
- URL: http://arxiv.org/abs/2401.06080v2
- Date: Fri, 12 Jan 2024 09:46:10 GMT
- Title: Secrets of RLHF in Large Language Models Part II: Reward Modeling
- Authors: Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang
Huang, Wei Shen, Senjie Jin, Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu,
Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun Zhao, Xiao Wang, Tao Ji, Hang Yan,
Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan
Wu, Yu-Gang Jiang
- Abstract summary: We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
- Score: 134.97964938009588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has become a crucial
technology for aligning language models with human values and intentions,
enabling models to produce more helpful and harmless responses. Reward models
are trained as proxies for human preferences to drive reinforcement learning
optimization. While reward models are often considered central to achieving
high performance, they face the following challenges in practical applications:
(1) Incorrect and ambiguous preference pairs in the dataset may hinder the
reward model from accurately capturing human intent. (2) Reward models trained
on data from a specific distribution often struggle to generalize to examples
outside that distribution and are not suitable for iterative RLHF training.
In this report, we attempt to address these two issues. (1) From a data
perspective, we propose a method to measure the strength of preferences within
the data, based on a voting mechanism of multiple reward models. Experimental
results confirm that data with varying preference strengths have different
impacts on reward model performance. We introduce a series of novel methods to
mitigate the influence of incorrect and ambiguous preferences in the dataset
and fully leverage high-quality preference data. (2) From an algorithmic
standpoint, we introduce contrastive learning to enhance the ability of reward
models to distinguish between chosen and rejected responses, thereby improving
model generalization. Furthermore, we employ meta-learning to enable the reward
model to maintain the ability to differentiate subtle differences in
out-of-distribution samples, and this approach can be utilized for iterative
RLHF optimization.
Related papers
- Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning [12.742158403867002]
Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
arXiv Detail & Related papers (2024-08-19T15:18:30Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Towards Understanding the Influence of Reward Margin on Preference Model Performance [8.891183078634786]
This study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators.
Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models.
arXiv Detail & Related papers (2024-04-07T12:10:04Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
Reinforcement Learning from Human Feedback (RLHF) is a technique that aligns language models closely with human-centric values.
It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective.
This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS)
arXiv Detail & Related papers (2024-01-29T17:43:42Z) - West-of-N: Synthetic Preferences for Self-Improving Reward Models [20.643537269666137]
We present a novel approach to improve reward model quality by generating synthetic preference data.
We find that this approach improves the performance of any reward model, with an effect comparable to the addition of a similar quantity of human preference data.
arXiv Detail & Related papers (2024-01-22T16:24:43Z) - The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback [5.037876196534672]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings.
In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions.
arXiv Detail & Related papers (2023-10-31T21:52:41Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.