LLMLight: Large Language Models as Traffic Signal Control Agents
- URL: http://arxiv.org/abs/2312.16044v4
- Date: Tue, 5 Mar 2024 13:21:38 GMT
- Title: LLMLight: Large Language Models as Traffic Signal Control Agents
- Authors: Siqi Lai, Zhao Xu, Weijia Zhang, Hao Liu and Hui Xiong
- Abstract summary: Traffic Signal Control (TSC) is a crucial component in urban traffic management, aiming to optimize road network efficiency and reduce congestion.
This paper presents LLMLight, a novel framework employing Large Language Models (LLMs) as decision-making agents for TSC.
- Score: 27.29109883009176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic Signal Control (TSC) is a crucial component in urban traffic
management, aiming to optimize road network efficiency and reduce congestion.
Traditional methods in TSC, primarily based on transportation engineering and
reinforcement learning (RL), often exhibit limitations in generalization across
varied traffic scenarios and lack interpretability. This paper presents
LLMLight, a novel framework employing Large Language Models (LLMs) as
decision-making agents for TSC. Specifically, the framework begins by
instructing the LLM with a knowledgeable prompt detailing real-time traffic
conditions. Leveraging the advanced generalization capabilities of LLMs,
LLMLight engages a reasoning and decision-making process akin to human
intuition for effective traffic control. Moreover, we build LightGPT, a
specialized backbone LLM tailored for TSC tasks. By learning nuanced traffic
patterns and control strategies, LightGPT enhances the LLMLight framework
cost-effectively. Extensive experiments on nine real-world and synthetic
datasets showcase the remarkable effectiveness, generalization ability, and
interpretability of LLMLight against nine transportation-based and RL-based
baselines.
Related papers
- Universal Model Routing for Efficient LLM Inference [72.65083061619752]
We consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time.
We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts.
We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors.
arXiv Detail & Related papers (2025-02-12T20:30:28Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Large Language Models (LLMs) as Traffic Control Systems at Urban Intersections: A New Paradigm [5.233512464561313]
This study introduces a novel approach for traffic control systems by using Large Language Models (LLMs) as traffic controllers.
The study utilizes their logical reasoning, scene understanding, and decision-making capabilities to optimize throughput and provide feedback based on traffic conditions in real-time.
arXiv Detail & Related papers (2024-11-16T19:23:52Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - Control Large Language Models via Divide and Conquer [94.48784966256463]
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG)
We evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications.
arXiv Detail & Related papers (2024-10-06T21:20:06Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLight is a novel traffic signal control system that enhances urban traffic management through movement-centric deep reinforcement learning.
By leveraging detailed real-time data and advanced machine learning techniques, MoveLight overcomes the limitations of traditional traffic signal control methods.
arXiv Detail & Related papers (2024-07-24T14:17:16Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a range of applications.
However, the increasing size and complexity of LLMs present significant challenges in both training and deployment.
We provide a review of recent advancements and research directions aimed at addressing these challenges.
arXiv Detail & Related papers (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
This paper proposes a novel model-based meta-reinforcement learning framework (ModelLight) for traffic signal control.
Within ModelLight, an ensemble of models for road intersections and the optimization-based meta-learning method are used to improve the data efficiency of an RL-based traffic light control method.
Experiments on real-world datasets demonstrate that ModelLight can outperform state-of-the-art traffic light control algorithms.
arXiv Detail & Related papers (2021-11-15T20:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.