LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments
- URL: http://arxiv.org/abs/2403.08337v2
- Date: Wed, 12 Jun 2024 14:53:58 GMT
- Title: LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments
- Authors: Maonan Wang, Aoyu Pang, Yuheng Kan, Man-On Pun, Chung Shue Chen, Bo Huang,
- Abstract summary: This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
- Score: 3.7788636451616697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion in metropolitan areas presents a formidable challenge with far-reaching economic, environmental, and societal ramifications. Therefore, effective congestion management is imperative, with traffic signal control (TSC) systems being pivotal in this endeavor. Conventional TSC systems, designed upon rule-based algorithms or reinforcement learning (RL), frequently exhibit deficiencies in managing the complexities and variabilities of urban traffic flows, constrained by their limited capacity for adaptation to unfamiliar scenarios. In response to these limitations, this work introduces an innovative approach that integrates Large Language Models (LLMs) into TSC, harnessing their advanced reasoning and decision-making faculties. Specifically, a hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed, facilitating the interrogation of both the static and dynamic traffic information. This design places the LLM at the center of the decision-making process, combining external traffic data with established TSC methods. Moreover, a simulation platform is developed to corroborate the efficacy of the proposed framework. The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments without the need for additional training. Notably, in cases of Sensor Outage (SO), our approach surpasses conventional RL-based systems by reducing the average waiting time by $20.4\%$. This research signifies a notable advance in TSC strategies and paves the way for the integration of LLMs into real-world, dynamic scenarios, highlighting their potential to revolutionize traffic management. The related code is available at https://github.com/Traffic-Alpha/LLM-Assisted-Light.
Related papers
- A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control [0.0]
We propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies.
We show that MAPPO-LCE outperforms three baseline MARL algorithms by across all environments and traffic constraints.
Our results show that constrained MARL is a valuable tool for traffic planners to deploy scalable and efficient ATSC methods in real-world traffic networks.
arXiv Detail & Related papers (2025-03-30T23:29:48Z) - Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
Large Language Models (LLMs) offer transformative potential to address transportation challenges.
This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation.
For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization.
arXiv Detail & Related papers (2025-03-27T11:56:27Z) - CoLLMLight: Cooperative Large Language Model Agents for Network-Wide Traffic Signal Control [7.0964925117958515]
Traffic Signal Control (TSC) plays a critical role in urban traffic management by optimizing traffic flow and mitigating congestion.
Existing approaches fail to address the essential need for inter-agent coordination.
We propose CoLLMLight, a cooperative LLM agent framework for TSC.
arXiv Detail & Related papers (2025-03-14T15:40:39Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities.
We explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol.
We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - CoT-VLM4Tar: Chain-of-Thought Guided Vision-Language Models for Traffic Anomaly Resolution [14.703196966156288]
CoT-VLM4Tar: (Chain of Thought Visual-Language Model for Traffic Anomaly Resolution)
This paper introduces a new chain-of-thought to guide the VLM in analyzing, reasoning, and generating solutions for traffic anomalies with greater reasonable and effective solution.
Our results demonstrate the effectiveness of VLM in the resolution of real-time traffic anomalies, providing a proof-of-concept for its integration into autonomous traffic management systems.
arXiv Detail & Related papers (2025-03-03T15:07:25Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Meta-Federated Learning: A Novel Approach for Real-Time Traffic Flow Management [0.0]
This paper introduces a novel approach by combining Federated Learning (FL) and Meta-Learning (ML) to create a decentralized, scalable, and adaptive traffic management system.
We implement our model across a simulated network of smart traffic devices, demonstrating that Meta-Federated Learning significantly outperforms traditional models in terms of prediction accuracy and response time.
Our approach shows remarkable adaptability to sudden changes in traffic patterns, suggesting a scalable solution for real-time traffic management in smart cities.
arXiv Detail & Related papers (2025-01-28T07:24:24Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - LLMLight: Large Language Models as Traffic Signal Control Agents [27.29109883009176]
Traffic Signal Control (TSC) is a crucial component in urban traffic management, aiming to optimize road network efficiency and reduce congestion.
This paper presents LLMLight, a novel framework employing Large Language Models (LLMs) as decision-making agents for TSC.
arXiv Detail & Related papers (2023-12-26T13:17:06Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
Efficient traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion.
Recent efforts that applied reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time.
We propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC.
arXiv Detail & Related papers (2023-06-15T04:08:09Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
We propose a Friend-Deep Q-network (Friend-DQN) approach for multiple traffic signal control in urban networks.
In particular, the cooperation between multiple agents can reduce the state-action space and thus speed up the convergence.
arXiv Detail & Related papers (2023-06-05T08:20:37Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.