The Quantum Kalman Decomposition: A Gramian Matrix Approach
- URL: http://arxiv.org/abs/2312.16082v1
- Date: Tue, 26 Dec 2023 15:10:00 GMT
- Title: The Quantum Kalman Decomposition: A Gramian Matrix Approach
- Authors: Guofeng Zhang and Jinghao Li and Zhiyuan Dong and Ian R. Petersen
- Abstract summary: The Kalman canonical form for quantum linear systems was derived in citeZGPG18.
The purpose of this paper is to present an alternative derivation by means of a Gramian matrix approach.
- Score: 4.138345020595332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Kalman canonical form for quantum linear systems was derived in
\cite{ZGPG18}. The purpose of this paper is to present an alternative
derivation by means of a Gramian matrix approach. Controllability and
observability Gramian matrices are defined for linear quantum systems, which
are used to characterize various subspaces. Based on these characterizations,
real orthogonal and block symplectic coordinate transformation matrices are
constructed to transform a given quantum linear system to the Kalman canonical
form. An example is used to illustrate the main results.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations.
arXiv Detail & Related papers (2024-07-15T07:11:44Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - On orthogonal bases in the Hilbert-Schmidt space of matrices [0.0]
Decomposition of (finite-dimensional) operators in terms of orthogonal bases of matrices has been a standard method in quantum physics for decades.
In recent years, it has become increasingly popular because of various methodologies applied in quantum information, such as the graph state formalism and the theory of quantum error correcting codes.
arXiv Detail & Related papers (2022-05-12T11:41:52Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Symplectic decomposition from submatrix determinants [0.0]
An important theorem in Gaussian quantum information tells us that we can diagonalise the covariance matrix of any Gaussian state via a symplectic transformation.
Inspired by a recently presented technique for finding the eigenvectors of a Hermitian matrix from certain submatrix eigenvalues, we derive a similar method for finding the diagonalising symplectic from certain submatrix determinants.
arXiv Detail & Related papers (2021-08-11T18:00:03Z) - Quantum Algorithms based on the Block-Encoding Framework for Matrix
Functions by Contour Integrals [1.5293427903448018]
We show a framework to implement the linear combination of the inverses on quantum computers.
We propose a quantum algorithm for matrix functions based on the framework.
arXiv Detail & Related papers (2021-06-15T12:10:35Z) - Block-encoding based quantum algorithm for linear systems with
displacement structures [4.145426157018113]
We present efficient and memory-reduced quantum algorithms for solving linear systems with displacement structures.
The proposed block-encodings provide a quadratic speedup with respect to the dimension over classical algorithms.
One of the quantum linear system solvers is applied to the linear prediction of time series.
arXiv Detail & Related papers (2019-12-27T16:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.