Understanding News Creation Intents: Frame, Dataset, and Method
- URL: http://arxiv.org/abs/2312.16490v1
- Date: Wed, 27 Dec 2023 09:35:23 GMT
- Title: Understanding News Creation Intents: Frame, Dataset, and Method
- Authors: Zhengjia Wang, Danding Wang, Qiang Sheng, Juan Cao, Silong Su, Yifan
Sun, Beizhe Hu, Siyuan Ma
- Abstract summary: News intent refers to the purpose or intention behind the creation of a news article.
We propose News INTent, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science.
- Score: 21.22991499250969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the disruptive changes in the media economy and the proliferation of
alternative news media outlets, news intent has progressively deviated from
ethical standards that serve the public interest. News intent refers to the
purpose or intention behind the creation of a news article. While the
significance of research on news intent has been widely acknowledged, the
absence of a systematic news intent understanding framework hinders further
exploration of news intent and its downstream applications. To bridge this gap,
we propose News INTent (NINT) frame, the first component-aware formalism for
understanding the news creation intent based on research in philosophy,
psychology, and cognitive science. Within this frame, we define the news intent
identification task and provide a benchmark dataset with fine-grained labels
along with an efficient benchmark method. Experiments demonstrate that NINT is
beneficial in both the intent identification task and downstream tasks that
demand a profound understanding of news. This work marks a foundational step
towards a more systematic exploration of news creation intents.
Related papers
- A Multilingual Similarity Dataset for News Article Frame [14.977682986280998]
We introduce an extended version of a large labeled news article dataset with 16,687 new labeled pairs.
Our method frees the work of manual identification of frame classes in traditional news frame analysis studies.
Overall we introduce the most extensive cross-lingual news article similarity dataset available to date with 26,555 labeled news article pairs across 10 languages.
arXiv Detail & Related papers (2024-05-22T01:01:04Z) - From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
We present NEWSSENSE, a novel sensemaking tool and reading interface designed to collect and integrate information from multiple news articles on a central topic.
NEWSSENSE augments a central, grounding article of the user's choice by linking it to related articles from different sources.
Our pilot study shows that NEWSSENSE has the potential to help users identify key information, verify the credibility of news articles, and explore different perspectives.
arXiv Detail & Related papers (2023-10-06T21:15:11Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Supporting verification of news articles with automated search for
semantically similar articles [0.0]
We propose an evidence retrieval approach to handle fake news.
The learning task is formulated as an unsupervised machine learning problem.
We find that our approach is agnostic to concept drifts, i.e. the machine learning task is independent of the hypotheses in a text.
arXiv Detail & Related papers (2021-03-29T12:56:59Z) - SirenLess: reveal the intention behind news [31.757138364005087]
We present SirenLess, a visual analytical system for misleading news detection by linguistic features.
The system features article explorer, a novel interactive tool that integrates news metadata and linguistic features to reveal semantic structures of news articles.
We use SirenLess to analyze 18 news articles from different sources and summarize some helpful patterns for misleading news detection.
arXiv Detail & Related papers (2020-01-08T20:36:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.