論文の概要: Computational Tradeoffs of Optimization-Based Bound Tightening in ReLU
Networks
- arxiv url: http://arxiv.org/abs/2312.16699v2
- Date: Tue, 30 Jan 2024 19:33:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-01 20:19:27.718774
- Title: Computational Tradeoffs of Optimization-Based Bound Tightening in ReLU
Networks
- Title(参考訳): ReLUネットワークにおける最適化に基づく境界強調の計算トレードオフ
- Authors: Fabian Badilla, Marcos Goycoolea, Gonzalo Mu\~noz, Thiago Serra
- Abstract要約: ニューラルネットワークをRectified Linear Unit(ReLU)アクティベーションで表現するMILP(Mixed-Integer Linear Programming)モデルは、ここ10年で急速に普及している。
これにより、MILP技術を用いて、テストまたはストレス・サービヘイビアを行い、トレーニングを逆向きに改善し、予測力を活かした最適化モデルに組み込むことが可能になった。
ネットワーク構造、正規化、ラウンドリングの影響に基づき、これらのモデルを実装するためのガイドラインを提供する。
- 参考スコア(独自算出の注目度): 4.01907644010256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of Mixed-Integer Linear Programming (MILP) models to represent neural
networks with Rectified Linear Unit (ReLU) activations has become increasingly
widespread in the last decade. This has enabled the use of MILP technology to
test-or stress-their behavior, to adversarially improve their training, and to
embed them in optimization models leveraging their predictive power. Many of
these MILP models rely on activation bounds. That is, bounds on the input
values of each neuron. In this work, we explore the tradeoff between the
tightness of these bounds and the computational effort of solving the resulting
MILP models. We provide guidelines for implementing these models based on the
impact of network structure, regularization, and rounding.
- Abstract(参考訳): relu(recurtified linear unit)アクティベーションを持つニューラルネットワークを表現するためのmilp(mixed-integer linear programming)モデルの利用は、この10年間でますます広まっている。
これにより、MILP技術を用いて、テストまたはストレス・サービヘイビアを行い、トレーニングを逆向きに改善し、予測能力を活用した最適化モデルに組み込むことができる。
これらのMILPモデルの多くはアクティベーション境界に依存している。
すなわち、各ニューロンの入力値に束縛される。
本研究では,これらの境界の厳密さと,その結果のMILPモデルの解法とのトレードオフについて検討する。
ネットワーク構造、正規化、ラウンドリングの影響に基づき、これらのモデルを実装するためのガイドラインを提供する。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Bayesian Entropy Neural Networks for Physics-Aware Prediction [14.705526856205454]
本稿では,ベイズニューラルネットワーク(BNN)の予測に制約を加えるためのフレームワークであるBENNを紹介する。
ベンは予測値だけでなく、その微分や分散を制約し、より堅牢で信頼性の高いモデル出力を保証できる。
その結果、従来のBNNよりも大幅に改善され、現代の制約されたディープラーニング手法と比較して競争性能が向上した。
論文 参考訳(メタデータ) (2024-07-01T07:00:44Z) - Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality [0.0]
この研究は、Mixed-Integer Programmingに固有の計算複雑性に対処するフレームワークを導入する。
ディープラーニングを利用することで、MIPインスタンス間の共通構造を特定し、活用する問題固有モデルを構築する。
本稿では,モデルの堅牢性と一般化性を高める合成データを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-17T19:15:13Z) - Optimization Over Trained Neural Networks: Taking a Relaxing Walk [4.517039147450688]
ニューラルネットワークモデルの大域的および局所的線形緩和を探索し,よりスケーラブルな解法を提案する。
我々の解法は最先端のMILP解法と競合し、それ以前には入力、深さ、ニューロン数の増加によるより良い解法を導出する。
論文 参考訳(メタデータ) (2024-01-07T11:15:00Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Mixed-Integer Optimisation of Graph Neural Networks for Computer-Aided
Molecular Design [4.593587844188084]
ReLUニューラルネットワークは、混合整数線形プログラミング(MILP)の制約としてモデル化されている。
本稿では、ReLUグラフ畳み込みニューラルネットワークの定式化と、ReLUグラフSAGEモデルのMILP定式化を提案する。
これらの定式化により、グローバルな最適性に埋め込まれた訓練されたGNNで最適化問題を解くことができる。
論文 参考訳(メタデータ) (2023-12-02T21:10:18Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Linearization of ReLU Activation Function for Neural Network-Embedded
Optimization:Optimal Day-Ahead Energy Scheduling [0.2900810893770134]
電池劣化ニューラルネットワークに基づくマイクログリッドデイアヘッドエネルギースケジューリングのような応用では、訓練された学習モデルの入力特徴は最適化モデルで解決すべき変数である。
ニューラルネットワークにおける非線形アクティベーション関数の使用は、解けなければそのような問題を極端に解決し難いものにする。
本稿では, 非線形活性化関数を, 広く用いられている整流線形単位(ReLU)関数に着目して線形化する方法について検討した。
論文 参考訳(メタデータ) (2023-10-03T02:47:38Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。