TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones
- URL: http://arxiv.org/abs/2312.16862v3
- Date: Fri, 21 Jun 2024 07:08:59 GMT
- Title: TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones
- Authors: Zhengqing Yuan, Zhaoxu Li, Weiran Huang, Yanfang Ye, Lichao Sun,
- Abstract summary: This study introduces TinyGPT-V, a novel open-source MLLM, designed for efficient training and inference across various vision-language tasks.
With its language model 2.8 billion parameters, TinyGPT-V achieves comparable results in VQA and image inference tasks to its larger counterparts.
- Score: 18.954681684239358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, multimodal large language models (MLLMs) such as GPT-4V have demonstrated remarkable advancements, excelling in a variety of vision-language tasks. Despite their prowess, the closed-source nature and computational demands of such models limit their accessibility and applicability. This study introduces TinyGPT-V, a novel open-source MLLM, designed for efficient training and inference across various vision-language tasks, including image captioning (IC) and visual question answering (VQA). Leveraging a compact yet powerful architecture, TinyGPT-V integrates the Phi-2 language model with pre-trained vision encoders, utilizing a unique mapping module for visual and linguistic information fusion. With a training regimen optimized for small backbones and employing a diverse dataset amalgam, TinyGPT-V requires significantly lower computational resources 24GB for training and as little as 8GB for inference without compromising on performance. Our experiments demonstrate that TinyGPT-V, with its language model 2.8 billion parameters, achieves comparable results in VQA and image inference tasks to its larger counterparts while being uniquely suited for deployment on resource-constrained devices through innovative quantization techniques. This work not only paves the way for more accessible and efficient MLLMs but also underscores the potential of smaller, optimized models in bridging the gap between high performance and computational efficiency in real-world applications. Additionally, this paper introduces a new approach to multimodal large language models using smaller backbones. Our code and training weights are available in the supplementary material.
Related papers
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities [11.53488611812612]
Recent advancements in Vision-Language (VL) models have sparked interest in their deployment on edge devices.
We introduce EdgeVL, a novel framework that seamlessly integrates dual-modality knowledge distillation and quantization-aware contrastive learning.
Our work represents the first systematic effort to adapt large VL models for edge deployment, showcasing up to 15.4% accuracy improvements on multiple datasets and up to 93-fold reduction in model size.
arXiv Detail & Related papers (2024-03-07T21:34:40Z) - Efficient Multimodal Learning from Data-centric Perspective [21.35857180519653]
We introduce Bunny, a family of lightweight MLLMs with flexible vision and language backbones for efficient multimodal learning.
Experiments show that our Bunny-4B/8B outperforms the state-of-the-art large MLLMs on multiple benchmarks.
arXiv Detail & Related papers (2024-02-18T10:09:10Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z) - HyperPELT: Unified Parameter-Efficient Language Model Tuning for Both
Language and Vision-and-Language Tasks [38.43269863509866]
How to perform parameter-efficient fine-tuning has become fairly important for quick transfer learning and deployment.
We design a novel unified parameter-efficient transfer learning framework that works effectively on both pure language and V&L tasks.
Our proposed framework adds fewer trainable parameters in multi-task learning while achieving superior performances and transfer ability compared to state-of-the-art methods.
arXiv Detail & Related papers (2022-03-08T06:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.