Efficient Multimodal Learning from Data-centric Perspective
- URL: http://arxiv.org/abs/2402.11530v3
- Date: Mon, 22 Jul 2024 09:54:40 GMT
- Title: Efficient Multimodal Learning from Data-centric Perspective
- Authors: Muyang He, Yexin Liu, Boya Wu, Jianhao Yuan, Yueze Wang, Tiejun Huang, Bo Zhao,
- Abstract summary: We introduce Bunny, a family of lightweight MLLMs with flexible vision and language backbones for efficient multimodal learning.
Experiments show that our Bunny-4B/8B outperforms the state-of-the-art large MLLMs on multiple benchmarks.
- Score: 21.35857180519653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated notable capabilities in general visual understanding and reasoning tasks. However, their deployment is hindered by substantial computational costs in both training and inference, limiting accessibility to the broader research and user communities. A straightforward solution is to leverage smaller pre-trained vision and language models, which inevitably cause significant performance drops. In this paper, we demonstrate the possibility of training a smaller but better MLLM with high-quality training data. Specifically, we introduce Bunny, a family of lightweight MLLMs with flexible vision and language backbones for efficient multimodal learning from selected training data. Experiments show that our Bunny-4B/8B outperforms the state-of-the-art large MLLMs on multiple benchmarks. We expect that this work can provide the community with a clean and flexible open-source tool for further research and development. The code, models, and data can be found in https://github.com/BAAI-DCAI/Bunny.
Related papers
- MiniPLM: Knowledge Distillation for Pre-Training Language Models [109.83741809808483]
MiniPLM is a KD framework for pre-training student language models.
For efficiency, MiniPLM performs offline teacher LM inference, allowing KD for multiple student LMs without adding training-time costs.
For flexibility, MiniPLM operates solely on the training corpus, enabling KD across model families.
arXiv Detail & Related papers (2024-10-22T17:40:32Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data [25.45278447786954]
We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL)
Our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources.
arXiv Detail & Related papers (2024-09-09T21:04:16Z) - Are Bigger Encoders Always Better in Vision Large Models? [21.797332686137203]
multimodal large language models (MLLMs) have shown strong potential in real-world applications.
The scaling trend of vision language models (VLMs) under the current mainstream paradigm has not been extensively studied.
We conduct experiments on the pretraining stage of MLLMs using different encoder sizes and large language model (LLM) sizes.
arXiv Detail & Related papers (2024-08-01T15:05:42Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.