論文の概要: Multi-Tier Computing-Enabled Digital Twin in 6G Networks
- arxiv url: http://arxiv.org/abs/2312.16999v1
- Date: Thu, 28 Dec 2023 13:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:08:48.524899
- Title: Multi-Tier Computing-Enabled Digital Twin in 6G Networks
- Title(参考訳): 6Gネットワークにおけるマルチティアコンピューティング可能なディジタルツイン
- Authors: Kunlun Wang, Yongyi Tang, Trung Q. Duong, Saeed R. Khosravirad, Octavia A. Dobre, George K. Karagiannidis,
- Abstract要約: 産業4.0では、製造業、自動車、医療などの産業がDTベースの開発を急速に採用している。
これまでの主な課題は、通信とコンピューティングリソースに対する高い要求と、プライバシとセキュリティに関する懸念だった。
新たなDTで低レイテンシと高セキュリティを実現するため,エッジ/フォグコンピューティングとクラウドコンピューティングを組み合わせたマルチ層コンピューティングが提案されている。
- 参考スコア(独自算出の注目度): 50.236861239246835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital twin (DT) is the recurrent and common feature in discussions about future technologies, bringing together advanced communication, computation, and artificial intelligence, to name a few. In the context of Industry 4.0, industries such as manufacturing, automotive, and healthcare are rapidly adopting DT-based development. The main challenges to date have been the high demands on communication and computing resources, as well as privacy and security concerns, arising from the large volumes of data exchanges. To achieve low latency and high security services in the emerging DT, multi-tier computing has been proposed by combining edge/fog computing and cloud computing. Specifically, low latency data transmission, efficient resource allocation, and validated security strategies of multi-tier computing systems are used to solve the operational problems of the DT system. In this paper, we introduce the architecture and applications of DT using examples from manufacturing, the Internet-of-Vehicles and healthcare. At the same time, the architecture and technology of multi-tier computing systems are studied to support DT. This paper will provide valuable reference and guidance for the theory, algorithms, and applications in collaborative multi-tier computing and DT.
- Abstract(参考訳): デジタルツイン(DT)は、先進的なコミュニケーション、計算、人工知能を組み合わさって、将来の技術について議論する上で、繰り返しかつ一般的な機能である。
産業4.0の文脈では、製造業、自動車、医療といった産業がDTベースの開発を急速に採用している。
これまでの主な課題は、大量のデータ交換から生じる、通信とコンピューティングリソースに対する高い要求と、プライバシとセキュリティ上の懸念である。
新たなDTで低レイテンシと高セキュリティを実現するため,エッジ/フォグコンピューティングとクラウドコンピューティングを組み合わせたマルチ層コンピューティングが提案されている。
具体的には、DTシステムの運用上の問題を解決するために、低レイテンシデータ伝送、効率的なリソース割り当て、多層コンピューティングシステムのセキュリティ戦略が使用される。
本稿では,製造,車両のインターネット,医療の例を例として,DTのアーキテクチャと応用について紹介する。
同時に、DTをサポートするため、多層コンピューティングシステムのアーキテクチャと技術について研究する。
本稿では,協調型多層計算とDTにおける理論,アルゴリズム,応用に関する貴重な参照とガイダンスを提供する。
関連論文リスト
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Efficient Task Offloading Algorithm for Digital Twin in Edge/Cloud
Computing Environment [14.14935102383516]
デジタルツイン(DT)は、物理オブジェクトとデジタルワールドの間の橋渡しとして、様々な領域に力を与える。
Mobile Cloud Computing (MCC) と Mobile Edge Computing (MEC) は、リアルタイムフィードバックを実現する上で重要な要素の2つになっている。
異種MEC/MCC環境を考慮した新しいDTシステムモデルを提案する。
論文 参考訳(メタデータ) (2023-07-12T03:31:34Z) - Enabling Spatial Digital Twins: Technologies, Challenges, and Future
Research Directions [13.210510790794006]
デジタルツイン(Digital Twin, DT)は、物理オブジェクトやシステムの仮想レプリカであり、その動作と特性を監視し、分析し、最適化するために作成される。
空間デジタル双生児 (SDT) は、物理的実体の地理空間的側面を強調する特定のタイプのデジタル双生児である。
我々は,SDTを階層化して構築する際の空間技術について,初めて体系的に解析を行った。
論文 参考訳(メタデータ) (2023-06-11T06:28:44Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
我々はICTの重要部分としてCompSysに注目している。
オランダ経済のトップセクター、国家研究アジェンダの各ルート、国連持続可能な開発目標の各ルートは、コンプシーズの進歩なしには対処できない課題を提起する。
論文 参考訳(メタデータ) (2022-05-26T11:02:29Z) - Digital Twin Virtualization with Machine Learning for IoT and Beyond 5G
Networks: Research Directions for Security and Optimal Control [3.1798318618973362]
デジタルツイン(DT)技術は、サイバー物理システムのリアルタイムデータ駆動モデリングのソリューションとして登場した。
我々は,クラウドコンピューティングを分散化して実装したDTフレームワークの概念階層アーキテクチャを構築した。
既存のシステム上での革新的な技術の開発と展開のリスクを下げることにおけるDTの重要性について論じる。
論文 参考訳(メタデータ) (2022-04-05T03:04:02Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
この研究は、様々なDT機能と現在のアプローチ、デジタルツインの実装と導入の遅れの背景にある欠点と理由を探求する。
この遅延の主な理由は、普遍的な参照フレームワークの欠如、ドメイン依存、共有データのセキュリティ上の懸念、デジタルツインの他の技術への依存、定量的メトリクスの欠如である。
論文 参考訳(メタデータ) (2020-11-02T19:08:49Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
人工知能(AI)アプリケーションは、産業や技術におけるビッグデータの課題に対して、トランスフォーメーションソリューションを推進している。
AIは、統計的および数学的厳密性を備えたコンピューティングパラダイムへと進化し続けており、トレーニング、検証、テストのためのシングルGPUソリューションがもはや不十分であることが明らかになっている。
この実現により、AIとハイパフォーマンスコンピューティングの融合が加速し、監視時間の短縮が図られている。
論文 参考訳(メタデータ) (2020-03-18T18:00:02Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。