Complexity-Theoretic Implications of Multicalibration
- URL: http://arxiv.org/abs/2312.17223v2
- Date: Mon, 29 Jul 2024 12:14:32 GMT
- Title: Complexity-Theoretic Implications of Multicalibration
- Authors: SÃlvia Casacuberta, Cynthia Dwork, Salil Vadhan,
- Abstract summary: Multiaccurate predictors satisfy a stronger condition: they are calibrated on each set in the collection.
This complexity-theoretic Regularity Lemma is known to have implications in different areas.
We show that every function (regardless of its hardness) has a small collection of disjoint hardcore sets.
- Score: 8.315801422499863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present connections between the recent literature on multigroup fairness for prediction algorithms and classical results in computational complexity. Multiaccurate predictors are correct in expectation on each member of an arbitrary collection of pre-specified sets. Multicalibrated predictors satisfy a stronger condition: they are calibrated on each set in the collection. Multiaccuracy is equivalent to a regularity notion for functions defined by Trevisan, Tulsiani, and Vadhan (2009). They showed that, given a class $F$ of (possibly simple) functions, an arbitrarily complex function $g$ can be approximated by a low-complexity function $h$ that makes a small number of oracle calls to members of $F$, where the notion of approximation requires that $h$ cannot be distinguished from $g$ by members of $F$. This complexity-theoretic Regularity Lemma is known to have implications in different areas, including in complexity theory, additive number theory, information theory, graph theory, and cryptography. Starting from the stronger notion of multicalibration, we obtain stronger and more general versions of a number of applications of the Regularity Lemma, including the Hardcore Lemma, the Dense Model Theorem, and the equivalence of conditional pseudo-min-entropy and unpredictability. For example, we show that every boolean function (regardless of its hardness) has a small collection of disjoint hardcore sets, where the sizes of those hardcore sets are related to how balanced the function is on corresponding pieces of an efficient partition of the domain.
Related papers
- Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions [18.086061048484616]
We study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems.
Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees.
We argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting.
arXiv Detail & Related papers (2023-10-04T17:24:45Z) - Parallel Quasi-concave set optimization: A new frontier that scales
without needing submodularity [14.93584434176082]
Class of quasi-concave set functions induced as a dual class to monotone linkage functions.
We show a potential for widespread applications via an example of diverse feature subset selection with exact global maxi-min guarantees.
arXiv Detail & Related papers (2021-08-19T15:50:41Z) - Statistically Meaningful Approximation: a Case Study on Approximating
Turing Machines with Transformers [50.85524803885483]
This work proposes a formal definition of statistically meaningful (SM) approximation which requires the approximating network to exhibit good statistical learnability.
We study SM approximation for two function classes: circuits and Turing machines.
arXiv Detail & Related papers (2021-07-28T04:28:55Z) - Bilinear Classes: A Structural Framework for Provable Generalization in
RL [119.42509700822484]
Bilinear Classes is a new structural framework which permits generalization in reinforcement learning.
The framework incorporates nearly all existing models in which a sample complexity is achievable.
Our main result provides an RL algorithm which has sample complexity for Bilinear Classes.
arXiv Detail & Related papers (2021-03-19T16:34:20Z) - Learning Aggregation Functions [78.47770735205134]
We introduce LAF (Learning Aggregation Functions), a learnable aggregator for sets of arbitrary cardinality.
We report experiments on semi-synthetic and real data showing that LAF outperforms state-of-the-art sum- (max-) decomposition architectures.
arXiv Detail & Related papers (2020-12-15T18:28:53Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Quantum Ensemble for Classification [2.064612766965483]
A powerful way to improve performance in machine learning is to construct an ensemble that combines the predictions of multiple models.
We propose a new quantum algorithm that exploits quantum superposition, entanglement and interference to build an ensemble of classification models.
arXiv Detail & Related papers (2020-07-02T11:26:54Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm [64.13217062232874]
SURF is an algorithm for approximating distributions by piecewises.
It outperforms state-of-the-art algorithms in experiments.
arXiv Detail & Related papers (2020-02-22T01:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.