論文の概要: Compact Neural Graphics Primitives with Learned Hash Probing
- arxiv url: http://arxiv.org/abs/2312.17241v1
- Date: Thu, 28 Dec 2023 18:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 14:33:11.327637
- Title: Compact Neural Graphics Primitives with Learned Hash Probing
- Title(参考訳): learn hash probingを用いたコンパクトニューラルネットワークプリミティブ
- Authors: Towaki Takikawa, Thomas M\"uller, Merlin Nimier-David, Alex Evans,
Sanja Fidler, Alec Jacobson, Alexander Keller
- Abstract要約: 学習したプローブを持つハッシュテーブルにはデメリットはなく,その結果,サイズと速度の組合せが好適であることを示す。
推論は、トレーニングが1.2-2.6倍遅い間、同じ品質で未処理のハッシュテーブルよりも高速である。
- 参考スコア(独自算出の注目度): 100.07267906666293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural graphics primitives are faster and achieve higher quality when their
neural networks are augmented by spatial data structures that hold trainable
features arranged in a grid. However, existing feature grids either come with a
large memory footprint (dense or factorized grids, trees, and hash tables) or
slow performance (index learning and vector quantization). In this paper, we
show that a hash table with learned probes has neither disadvantage, resulting
in a favorable combination of size and speed. Inference is faster than unprobed
hash tables at equal quality while training is only 1.2-2.6x slower,
significantly outperforming prior index learning approaches. We arrive at this
formulation by casting all feature grids into a common framework: they each
correspond to a lookup function that indexes into a table of feature vectors.
In this framework, the lookup functions of existing data structures can be
combined by simple arithmetic combinations of their indices, resulting in
Pareto optimal compression and speed.
- Abstract(参考訳): ニューラルネットワークのプリミティブは、トレーニング可能な機能をグリッドに配置した空間データ構造によって拡張されると、より高速で高品質になる。
しかし、既存の機能グリッドには大きなメモリフットプリント(密度または分解されたグリッド、ツリー、ハッシュテーブル)または遅いパフォーマンス(インデックス学習とベクトル量子化)がある。
本稿では,学習プローブを用いたハッシュテーブルが不利な点がなく,その結果,サイズと速度の組合せが良好であることを示す。
推論は、トレーニングが1.2-2.6倍遅く、事前のインデックス学習アプローチよりも大幅に優れています。
すべてのフィーチャーグリッドを共通のフレームワークにキャストすることで、この定式化に到達します。それらはそれぞれ、フィーチャーベクトルのテーブルにインデックスするルックアップ関数に対応しています。
このフレームワークでは、既存のデータ構造のルックアップ関数をインデックスの単純な算術的な組み合わせで組み合わせることができるため、パレートの最適圧縮と速度が得られる。
関連論文リスト
- Neural Topological Ordering for Computation Graphs [23.225391263047364]
エンコーダ-デコーダフレームワークを用いたトポロジ的順序付けのためのエンドツーエンドの機械学習に基づくアプローチを提案する。
このモデルでは,最大2kノードの合成グラフにおいて,いくつかのトポロジ的順序付けベースラインで,より高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2022-07-13T00:12:02Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Convergent Boosted Smoothing for Modeling Graph Data with Tabular Node
Features [46.052312251801]
本稿では,グラフ伝播ステップでブースティングを反復するフレームワークを提案する。
我々のアプローチは、原則化されたメタロス関数に固定されている。
様々な非イドグラフデータセットに対して,本手法は同等あるいは優れた性能を実現する。
論文 参考訳(メタデータ) (2021-10-26T04:53:12Z) - Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.59146413326056]
ポイントクラウド上で学習するためのグラフ畳み込みネットワーク(GCN)の計算効率の向上を目指します。
一連の実験により、最適化されたネットワークは計算複雑性を減らし、メモリ消費を減らし、推論速度を加速した。
論文 参考訳(メタデータ) (2021-04-12T17:59:16Z) - Ramanujan Bipartite Graph Products for Efficient Block Sparse Neural
Networks [2.4235475271758076]
本稿では,グラフ積の理論を用いて,構造化マルチレベルブロックスパースニューラルネットワークを生成するフレームワークを提案する。
ラマヌジャングラフの積も提案するが、これは与えられた範囲で最高の接続性を与える。
我々は,VGG19とWideResnet-40-4ネットワークを用いて,CIFARデータセット上の画像分類タスクを実験することで,我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2020-06-24T05:08:17Z) - Online Sequential Extreme Learning Machines: Features Combined From
Hundreds of Midlayers [0.0]
本稿では階層型オンラインシーケンシャル学習アルゴリズム(H-OS-ELM)を提案する。
アルゴリズムは、一定のブロックサイズまたは異なるブロックサイズでチャンクごとにチャンクを学習することができる。
論文 参考訳(メタデータ) (2020-06-12T00:50:04Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。