論文の概要: Enhancing Low-Resource Relation Representations through Multi-View Decoupling
- arxiv url: http://arxiv.org/abs/2312.17267v4
- Date: Thu, 30 May 2024 01:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 23:23:04.054283
- Title: Enhancing Low-Resource Relation Representations through Multi-View Decoupling
- Title(参考訳): マルチビューデカップリングによる低リソース関係表現の強化
- Authors: Chenghao Fan, Wei Wei, Xiaoye Qu, Zhenyi Lu, Wenfeng Xie, Yu Cheng, Dangyang Chen,
- Abstract要約: 本稿では,MVREという新しいプロンプトに基づく関係表現手法を提案する。
MVREは、各関係を異なる視点に分離し、多視点関係表現を包含する。
提案手法は,低リソース環境下での最先端化を実現する。
- 参考スコア(独自算出の注目度): 21.32064890807893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, prompt-tuning with pre-trained language models (PLMs) has demonstrated the significantly enhancing ability of relation extraction (RE) tasks. However, in low-resource scenarios, where the available training data is scarce, previous prompt-based methods may still perform poorly for prompt-based representation learning due to a superficial understanding of the relation. To this end, we highlight the importance of learning high-quality relation representation in low-resource scenarios for RE, and propose a novel prompt-based relation representation method, named MVRE (\underline{M}ulti-\underline{V}iew \underline{R}elation \underline{E}xtraction), to better leverage the capacity of PLMs to improve the performance of RE within the low-resource prompt-tuning paradigm. Specifically, MVRE decouples each relation into different perspectives to encompass multi-view relation representations for maximizing the likelihood during relation inference. Furthermore, we also design a Global-Local loss and a Dynamic-Initialization method for better alignment of the multi-view relation-representing virtual words, containing the semantics of relation labels during the optimization learning process and initialization. Extensive experiments on three benchmark datasets show that our method can achieve state-of-the-art in low-resource settings.
- Abstract(参考訳): 近年,プレトレーニング言語モデル (PLM) を用いたプロンプトチューニングにより,関係抽出(RE)タスクの大幅な向上が示されている。
しかし、利用可能なトレーニングデータが不足している低リソースのシナリオでは、従来のプロンプトベースの手法は、その関係を表面的に理解しているため、プロンプトベースの表現学習では依然として不十分である。
そこで我々は,REの低リソースシナリオにおける高品質な関係表現の学習の重要性を強調し,低リソースのプロンプトチューニングパラダイムにおけるREの性能向上のために,PLMのキャパシティを向上するために,MVRE(\underline{M}ulti-\underline{V}iew \underline{R}elation \underline{E}xtraction)と呼ばれる新しいプロンプトベースの関係表現手法を提案する。
具体的には、MVREは各関係を異なる視点に分離し、関係推論における可能性の最大化のための多視点関係表現を包含する。
さらに,最適化学習過程と初期化過程における関係ラベルのセマンティクスを含む,多視点関係表現仮想単語のアライメントを改善するためのグローバルローカロスと動的初期化手法も設計する。
3つのベンチマークデータセットの大規模な実験により、我々の手法は低リソース環境で最先端を達成できることが示されている。
関連論文リスト
- DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
関係抽出(RE)は、構造化されていないデータを知識グラフ(KG)のような構造化形式に変換するために重要である
プレトレーニング言語モデル(PLM)を活用した最近の研究は、この分野で大きな成功を収めている。
本研究では、微調整LDMの性能と、Retrieval Augmented-based (RAG) REアプローチへの統合について検討する。
論文 参考訳(メタデータ) (2024-06-20T21:27:57Z) - RelationVLM: Making Large Vision-Language Models Understand Visual Relations [66.70252936043688]
本稿では,複数の画像にまたがっても動画内でも,様々なレベルの関係を解釈できる大規模視覚言語モデルであるRelationVLMを提案する。
具体的には,多段階的な関係認識学習手法とそれに対応するデータ構成戦略を考案し,意味的関係を理解する能力を備えた関係VLMを提案する。
論文 参考訳(メタデータ) (2024-03-19T15:01:19Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
関係抽出は低リソースのシナリオやドメインでは特に困難である。
近年の文献は自己教師型学習によって低リソースREに取り組みつつある。
コントラスト学習の一貫した目的を用いたREモデルの事前学習と微調整を提案する。
論文 参考訳(メタデータ) (2022-12-21T07:30:22Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
大規模事前学習言語モデル(PLM)は、従来のニューラルネットワーク手法と比較して圧倒的な性能を示している。
階層的および領域的関係情報の両方を抽出する階層的関係知識蒸留法(HRKD)を提案する。
論文 参考訳(メタデータ) (2021-10-16T11:23:02Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。