Generative Posterior Networks for Approximately Bayesian Epistemic
Uncertainty Estimation
- URL: http://arxiv.org/abs/2312.17411v1
- Date: Fri, 29 Dec 2023 00:43:41 GMT
- Title: Generative Posterior Networks for Approximately Bayesian Epistemic
Uncertainty Estimation
- Authors: Melrose Roderick, Felix Berkenkamp, Fatemeh Sheikholeslami, Zico
Kolter
- Abstract summary: We propose a new method, Generative Posterior Networks (GPNs), that uses unlabeled data to estimate uncertainty in high-dimensional problems.
A GPN is a generative model that, given a prior distribution over functions, approximates the posterior distribution directly by regularizing the network towards samples from the prior.
- Score: 11.66240919177989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world problems, there is a limited set of training data, but an
abundance of unlabeled data. We propose a new method, Generative Posterior
Networks (GPNs), that uses unlabeled data to estimate epistemic uncertainty in
high-dimensional problems. A GPN is a generative model that, given a prior
distribution over functions, approximates the posterior distribution directly
by regularizing the network towards samples from the prior. We prove
theoretically that our method indeed approximates the Bayesian posterior and
show empirically that it improves epistemic uncertainty estimation and
scalability over competing methods.
Related papers
- Offline Bayesian Aleatoric and Epistemic Uncertainty Quantification and Posterior Value Optimisation in Finite-State MDPs [3.1139806580181006]
We address the challenge of quantifying Bayesian uncertainty in offline use cases of finite-state Markov Decision Processes (MDPs) with unknown dynamics.
We use standard Bayesian reinforcement learning methods to capture the posterior uncertainty in MDP parameters.
We then analytically compute the first two moments of the return distribution across posterior samples and apply the law of total variance.
We highlight the real-world impact and computational scalability of our method by applying it to the AI Clinician problem.
arXiv Detail & Related papers (2024-06-04T16:21:14Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Federated Learning with Uncertainty via Distilled Predictive
Distributions [14.828509220023387]
We present a framework for federated learning with uncertainty where, in each round, each client infers the posterior distribution over its parameters as well as the posterior predictive distribution (PPD)
Unlike some of the recent Bayesian approaches to federated learning, our approach does not require sending the whole posterior distribution of the parameters from each client to the server.
Our approach does not make any restrictive assumptions, such as the form of the clients' posterior distributions, or of their PPDs.
arXiv Detail & Related papers (2022-06-15T14:24:59Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions.
Some recent approaches quantify uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution.
We develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions.
arXiv Detail & Related papers (2020-06-07T15:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.