Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
- URL: http://arxiv.org/abs/2312.17463v1
- Date: Fri, 29 Dec 2023 04:15:58 GMT
- Title: Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
- Authors: Benjamin Eyre, Elliot Creager, David Madras, Vardan Papyan, Richard
Zemel
- Abstract summary: We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
- Score: 12.770658031721435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing deep neural network classifiers that perform robustly on
distributions differing from the available training data is an active area of
machine learning research. However, out-of-distribution generalization for
regression-the analogous problem for modeling continuous targets-remains
relatively unexplored. To tackle this problem, we return to first principles
and analyze how the closed-form solution for Ordinary Least Squares (OLS)
regression is sensitive to covariate shift. We characterize the
out-of-distribution risk of the OLS model in terms of the eigenspectrum
decomposition of the source and target data. We then use this insight to
propose a method for adapting the weights of the last layer of a pre-trained
neural regression model to perform better on input data originating from a
different distribution. We demonstrate how this lightweight spectral adaptation
procedure can improve out-of-distribution performance for synthetic and
real-world datasets.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - SPDE priors for uncertainty quantification of end-to-end neural data
assimilation schemes [4.213142548113385]
Recent advances in the deep learning community enables to adress this problem as neural architecture embedding data assimilation variational framework.
In this work, we draw from SPDE-based Processes to estimate prior models able to handle non-stationary covariances in both space and time.
Our neural variational scheme is modified to embed an augmented state formulation with both state SPDE parametrization to estimate.
arXiv Detail & Related papers (2024-02-02T19:18:12Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
We propose a neural network-based distributional regression methodology called engression'
An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes.
We show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions.
arXiv Detail & Related papers (2023-07-03T08:19:00Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.