Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data
- URL: http://arxiv.org/abs/2109.06565v1
- Date: Tue, 14 Sep 2021 10:22:21 GMT
- Title: Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data
- Authors: Wentai Wu, Ligang He and Weiwei Lin
- Abstract summary: We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
- Score: 8.115323786541078
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Both classification and regression tasks are susceptible to the biased
distribution of training data. However, existing approaches are focused on the
class-imbalanced learning and cannot be applied to the problems of numerical
regression where the learning targets are continuous values rather than
discrete labels. In this paper, we aim to improve the accuracy of the
regression analysis by addressing the data skewness/bias during model training.
We first introduce two metrics, uniqueness and abnormality, to reflect the
localized data distribution from the perspectives of their feature (i.e.,
input) space and target (i.e., output) space. Combining these two metrics we
propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the
gradient descent-based model training for regression analysis. We have
conducted comprehensive experiments on both synthetic and real-world data sets.
The results show significant improvement in the model quality (reduction in
error by up to 11.9%) when using VILoss as the loss criterion in training.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Adaptive Optimization for Prediction with Missing Data [6.800113478497425]
We show that some adaptive linear regression models are equivalent to learning an imputation rule and a downstream linear regression model simultaneously.
In settings where data is strongly not missing at random, our methods achieve a 2-10% improvement in out-of-sample accuracy.
arXiv Detail & Related papers (2024-02-02T16:35:51Z) - A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming [1.6874375111244329]
This paper considers a generalized linear regression model as a problem with chance constraints.
The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model.
arXiv Detail & Related papers (2024-01-16T16:45:51Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
We present a technique for certifying whether linear regression models are pointwise-robust to label bias in a training dataset.
We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method.
We also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets.
arXiv Detail & Related papers (2022-06-07T20:47:07Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - A Locally Adaptive Interpretable Regression [7.4267694612331905]
Linear regression is one of the most interpretable prediction models.
In this work, we introduce a locally adaptive interpretable regression (LoAIR)
Our model achieves comparable or better predictive performance than the other state-of-the-art baselines.
arXiv Detail & Related papers (2020-05-07T09:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.