論文の概要: Causal State Distillation for Explainable Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2401.00104v2
- Date: Mon, 1 Apr 2024 04:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 11:23:11.365323
- Title: Causal State Distillation for Explainable Reinforcement Learning
- Title(参考訳): 説明可能な強化学習のための因果状態蒸留
- Authors: Wenhao Lu, Xufeng Zhao, Thilo Fryen, Jae Hee Lee, Mengdi Li, Sven Magg, Stefan Wermter,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、知的エージェントを訓練するための強力なテクニックであるが、これらのエージェントが特定の決定を下す理由を理解することは困難である。
この問題に対処するために様々なアプローチが検討され、ある有望な道は報酬分解(RD)である。
RDは、エージェントの振る舞いをポストホックな方法で合理化しようとする他の方法に関連する懸念のいくつかを傍受するので、魅力的である。
我々は、より情報的な説明を提供するために、サブリワードを超えてRDの拡張を示す。
- 参考スコア(独自算出の注目度): 16.998047658978482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a powerful technique for training intelligent agents, but understanding why these agents make specific decisions can be quite challenging. This lack of transparency in RL models has been a long-standing problem, making it difficult for users to grasp the reasons behind an agent's behaviour. Various approaches have been explored to address this problem, with one promising avenue being reward decomposition (RD). RD is appealing as it sidesteps some of the concerns associated with other methods that attempt to rationalize an agent's behaviour in a post-hoc manner. RD works by exposing various facets of the rewards that contribute to the agent's objectives during training. However, RD alone has limitations as it primarily offers insights based on sub-rewards and does not delve into the intricate cause-and-effect relationships that occur within an RL agent's neural model. In this paper, we present an extension of RD that goes beyond sub-rewards to provide more informative explanations. Our approach is centred on a causal learning framework that leverages information-theoretic measures for explanation objectives that encourage three crucial properties of causal factors: causal sufficiency, sparseness, and orthogonality. These properties help us distill the cause-and-effect relationships between the agent's states and actions or rewards, allowing for a deeper understanding of its decision-making processes. Our framework is designed to generate local explanations and can be applied to a wide range of RL tasks with multiple reward channels. Through a series of experiments, we demonstrate that our approach offers more meaningful and insightful explanations for the agent's action selections.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、知的エージェントを訓練するための強力なテクニックであるが、これらのエージェントが特定の決定を下す理由を理解することは、非常に難しい。
RLモデルにおけるこの透明性の欠如は長年の問題であり、エージェントの振る舞いの背後にある理由を理解するのが難しくなった。
この問題に対処するために様々なアプローチが検討され、ある有望な道は報酬分解(RD)である。
RDは、エージェントの振る舞いをポストホックな方法で合理化しようとする他の方法に関連する懸念のいくつかを傍受するので、魅力的である。
RDは、訓練中のエージェントの目的に寄与する報酬の様々な面を明らかにすることで機能する。
しかしRDは、主にサブリワードに基づく洞察を提供し、RLエージェントの神経モデル内で起こる複雑な因果関係を掘り下げないため、制限がある。
本稿では,より情報的な説明を提供するために,サブリワードを超えてRDの拡張を提案する。
我々のアプローチは、因果的要因の3つの重要な特性である因果的充足性、スパース性、直交性を促進する、説明目的のための情報理論的尺度を活用する因果的学習の枠組みに重点を置いている。
これらの性質は、エージェントの状態と行動や報酬の間の因果関係を蒸留し、意思決定プロセスのより深い理解を可能にする。
我々のフレームワークは局所的な説明を生成するように設計されており、複数の報奨チャンネルを持つ広範囲なRLタスクに適用できる。
一連の実験を通して、我々のアプローチはエージェントの行動選択に対してより有意義で洞察に富んだ説明を提供することを示した。
関連論文リスト
- Semifactual Explanations for Reinforcement Learning [1.5320737596132754]
強化学習(Reinforcement Learning、RL)は、エージェントが試行錯誤を通じて環境から学習する学習パラダイムである。
ディープ強化学習(DRL)アルゴリズムは、ニューラルネットワークを使用してエージェントのポリシーを表現し、その決定を解釈しにくくする。
DRLエージェントの動作を説明するには,ユーザの信頼を向上し,エンゲージメントを高め,実際のタスクとの統合を容易にする必要がある。
論文 参考訳(メタデータ) (2024-09-09T08:37:47Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILeは、学生のパフォーマンスと専門家によるデモンストレーションとの整合性に基づいて、動的報酬関数を学習する新しいトレーナー学生システムである。
RILeは、従来のメソッドがフェールする複雑な環境でのより良いパフォーマンスを実現し、複雑なシミュレートされたロボット移動タスクにおいて、既存のメソッドを2倍の性能で上回る。
論文 参考訳(メタデータ) (2024-06-12T17:56:31Z) - Sim-to-Real Causal Transfer: A Metric Learning Approach to
Causally-Aware Interaction Representations [62.48505112245388]
エージェント相互作用の現代的表現の因果認識を詳細に検討する。
近年の表現は、非因果剤の摂動に対して部分的に耐性があることが示されている。
因果アノテーションを用いた潜在表現を正規化するための計量学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:57:03Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
一般的に使われているアクションマッチングの原理は、RLエージェントの解釈よりもディープニューラルネットワーク(DNN)の説明に近いと論じられている。
本稿では,RLエージェントの主目的である報酬を,RLエージェントを解釈する本質的な目的として考察する。
我々は,Atari 2600 ゲームと,挑戦的な自動運転車シミュレータ環境である Duckietown の検証と評価を行った。
論文 参考訳(メタデータ) (2023-09-04T09:09:54Z) - GANterfactual-RL: Understanding Reinforcement Learning Agents'
Strategies through Visual Counterfactual Explanations [0.7874708385247353]
本稿では,RLエージェントの反実的説明を生成する手法を提案する。
本手法は完全にモデルに依存しないので,いくつかの計算量において,従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-02-24T15:29:43Z) - Redefining Counterfactual Explanations for Reinforcement Learning:
Overview, Challenges and Opportunities [2.0341936392563063]
AIのほとんどの説明方法は、開発者とエキスパートユーザーに焦点を当てている。
ブラックボックスモデルの出力が変更されるための入力で何が変更されるのかについて、カウンターファクトな説明がユーザにアドバイスします。
カウンターファクトはユーザフレンドリで、AIシステムから望ましいアウトプットを達成するための実行可能なアドバイスを提供する。
論文 参考訳(メタデータ) (2022-10-21T09:50:53Z) - Experiential Explanations for Reinforcement Learning [15.80179578318569]
強化学習システムは複雑で解釈不能である。
本稿では,実証説明手法を提案する。
論文 参考訳(メタデータ) (2022-10-10T14:27:53Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
我々は、人間不合理性の確立されたモデルであるRational Inattention(RI)モデルを含む、より人間的なRLエージェントについて検討する。
RIRLは、相互情報を用いた認知情報処理のコストをモデル化する。
我々は、RIRLを用いることで、合理的な仮定の下で発見されたものと異なる、新しい平衡挙動の豊富なスペクトルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-18T20:54:00Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
強化学習(Reinforcement Learning, RL)法は、ブロードXAIの開発に必要な認知モデルのための潜在的なバックボーンを提供する。
RLは、さまざまなシーケンシャルな意思決定問題の解決に成功している一連のアプローチである。
本稿では,現在のXRL研究を統一し,Broad-XAI開発のバックボーンとしてRLを用いるCausal XRL Framework (CXF) という概念的フレームワークを導入することを目的とする。
論文 参考訳(メタデータ) (2021-08-20T05:18:50Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。