論文の概要: Explainability-Driven Leaf Disease Classification Using Adversarial
Training and Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2401.00334v3
- Date: Tue, 23 Jan 2024 05:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 12:53:08.156219
- Title: Explainability-Driven Leaf Disease Classification Using Adversarial
Training and Knowledge Distillation
- Title(参考訳): 逆行訓練と知識蒸留によるリーフ病の分類
- Authors: Sebastian-Vasile Echim, Iulian-Marius T\u{a}iatu, Dumitru-Clementin
Cercel, Florin Pop
- Abstract要約: 本研究は, 植物葉病の分類に焦点を当て, 逆行訓練, モデル説明可能性, モデル圧縮の3つの重要な側面を探求する。
このロバスト性は、通常のテストでは3%-20%、敵攻撃テストでは50%-70%の性能低下を伴う分類精度の価格である。
- 参考スコア(独自算出の注目度): 2.2823100315094624
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work focuses on plant leaf disease classification and explores three
crucial aspects: adversarial training, model explainability, and model
compression. The models' robustness against adversarial attacks is enhanced
through adversarial training, ensuring accurate classification even in the
presence of threats. Leveraging explainability techniques, we gain insights
into the model's decision-making process, improving trust and transparency.
Additionally, we explore model compression techniques to optimize computational
efficiency while maintaining classification performance. Through our
experiments, we determine that on a benchmark dataset, the robustness can be
the price of the classification accuracy with performance reductions of 3%-20%
for regular tests and gains of 50%-70% for adversarial attack tests. We also
demonstrate that a student model can be 15-25 times more computationally
efficient for a slight performance reduction, distilling the knowledge of more
complex models.
- Abstract(参考訳): 本研究は,植物葉病の分類に焦点をあて,逆行訓練,モデル説明可能性,モデル圧縮の3つの重要な側面を考察する。
モデルの敵攻撃に対する堅牢性は、敵の訓練によって強化され、脅威が存在する場合でも正確な分類が保証される。
説明可能性技術を活用することで、モデルの意思決定プロセスに対する洞察を得、信頼と透明性を改善します。
さらに,分類性能を維持しつつ計算効率を最適化するためのモデル圧縮手法を検討する。
本実験により,ベンチマークデータセット上でのロバスト性は,正規テストでは3%~20%,敵攻撃テストでは50%~70%の精度で,分類精度の値が決定される。
また, 学生モデルの計算効率は, 計算効率が15~25倍に向上し, より複雑なモデルの知識を抽出できることを実証した。
関連論文リスト
- Criticality Leveraged Adversarial Training (CLAT) for Boosted Performance via Parameter Efficiency [15.211462468655329]
CLATは、パラメータ効率を敵のトレーニングプロセスに導入し、クリーンな精度と敵の堅牢性の両方を改善した。
既存の対数訓練法に応用でき、トレーニング可能なパラメータの数を約95%削減できる。
論文 参考訳(メタデータ) (2024-08-19T17:58:03Z) - Adversarial Fine-tuning of Compressed Neural Networks for Joint Improvement of Robustness and Efficiency [3.3490724063380215]
アドリラルトレーニングは、より堅牢なモデルをもたらすことができる緩和戦略として提示されている。
本稿では,2つの異なるモデル圧縮手法(構造的重み打ち法と量子化法)が対向ロバスト性に及ぼす影響について検討する。
本研究では, 圧縮モデルの逆方向微調整により, 対向訓練モデルに匹敵する強靭性性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-14T14:34:25Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL)はラベル付きデータの不足に対する潜在的な解決策を提供する。
1次元心電図(PCG)分類におけるコントラスト学習の最適化を提案する。
トレーニング分布によっては、完全教師付きモデルの有効性が最大32%低下し、SSLモデルは最大10%低下し、場合によっては改善される。
論文 参考訳(メタデータ) (2023-12-01T11:06:00Z) - Adversarial Fine-tune with Dynamically Regulated Adversary [27.034257769448914]
健康診断や自律手術ロボットなどの現実世界の多くの応用において、このような極めて悪意のある攻撃に対するモデルロバスト性よりも、標準的な性能が重視されている。
本研究は, モデル標準性能に対する対向サンプルの負の効果を阻害する, 単純かつ効果的な移動学習に基づく対向学習戦略を提案する。
さらに,トレーニングの複雑さを伴わずに,敵の強靭性を向上する訓練フレンドリーな敵攻撃アルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-04-28T00:07:15Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
知識蒸留は, 対向ロバスト性において, 最先端モデルの性能を高めるために直接的に利用できることを示す。
本稿では,モデルの性能向上のための新しいフレームワークであるAdversarial Knowledge Distillation (AKD)を提案する。
論文 参考訳(メタデータ) (2022-03-14T15:02:13Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。