HSC-GPT: A Large Language Model for Human Settlements Construction
- URL: http://arxiv.org/abs/2401.00504v1
- Date: Sun, 31 Dec 2023 13:56:15 GMT
- Title: HSC-GPT: A Large Language Model for Human Settlements Construction
- Authors: Chen Ran, Yao Xueqi, Jiang Xuhui, Han Zhengqi, Guo Jingze, Zhang
Xianyue, Lin Chunyu, Liu Chumin, Zhao Jing, Lian Zeke, Zhang Jingjing, Li
Keke
- Abstract summary: Recent research has sought to integrate natural language processing (NLP) and generative artificial intelligence (AI) into human settlement construction tasks.
This paper first proposes HSC-GPT, a large-scale language model framework specifically designed for tasks in human settlement construction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of human settlement construction encompasses a range of spatial
designs and management tasks, including urban planning and landscape
architecture design. These tasks involve a plethora of instructions and
descriptions presented in natural language, which are essential for
understanding design requirements and producing effective design solutions.
Recent research has sought to integrate natural language processing (NLP) and
generative artificial intelligence (AI) into human settlement construction
tasks. Due to the efficient processing and analysis capabilities of AI with
data, significant successes have been achieved in design within this domain.
However, this task still faces several fundamental challenges. The semantic
information involved includes complex spatial details, diverse data source
formats, high sensitivity to regional culture, and demanding requirements for
innovation and rigor in work scenarios. These factors lead to limitations when
applying general generative AI in this field, further exacerbated by a lack of
high-quality data for model training. To address these challenges, this paper
first proposes HSC-GPT, a large-scale language model framework specifically
designed for tasks in human settlement construction, considering the unique
characteristics of this domain.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance.
The model excelled in tasks requiring intricate reasoning and knowledge integration across various fields.
Overall results indicate significant progress towards artificial general intelligence.
arXiv Detail & Related papers (2024-09-27T06:57:00Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
Book chapter explores the evolving landscape of Software Engineering in general, and Requirements Engineering (RE) in particular.
We discuss challenges that arise while integrating Natural Language Processing (NLP) and generative AI into enterprise-critical software systems.
Book provides practical insights, solutions, and examples to equip readers with the knowledge and tools necessary.
arXiv Detail & Related papers (2024-02-26T19:19:47Z) - Generative AI in the Construction Industry: A State-of-the-art Analysis [0.4241054493737716]
There is a gap in the literature on the current state, opportunities, and challenges of generative AI in the construction industry.
This study aims to review and categorize the existing and emerging generative AI opportunities and challenges in the construction industry.
It proposes a framework for construction firms to build customized generative AI solutions using their own data.
arXiv Detail & Related papers (2024-02-15T13:39:55Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Unifying Image Processing as Visual Prompting Question Answering [62.84955983910612]
Image processing is a fundamental task in computer vision, which aims at enhancing image quality and extracting essential features for subsequent vision applications.
Traditionally, task-specific models are developed for individual tasks and designing such models requires distinct expertise.
We propose a universal model for general image processing that covers image restoration, image enhancement, image feature extraction tasks.
arXiv Detail & Related papers (2023-10-16T15:32:57Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - Core Challenges in Embodied Vision-Language Planning [11.896110519868545]
Embodied Vision-Language Planning tasks leverage computer vision and natural language for interaction in physical environments.
We propose a taxonomy to unify these tasks and provide an analysis and comparison of the current and new algorithmic approaches.
We advocate for task construction that enables model generalisability and furthers real-world deployment.
arXiv Detail & Related papers (2023-04-05T20:37:13Z) - A Case for Business Process-Specific Foundation Models [6.25118865553438]
We argue that business process data representations have unique characteristics that warrant the development of a new class of foundation models.
These models should tackle the unique challenges of applying AI to business processes which include data scarcity, multi-modal representations, domain specific terminology, and privacy concerns.
arXiv Detail & Related papers (2022-10-26T14:17:47Z) - Artificial Intelligence and Natural Language Processing and
Understanding in Space: Four ESA Case Studies [48.53582660901672]
We present a methodological framework based on artificial intelligence and natural language processing and understanding to automatically extract information from Space documents.
Case studies are implemented across different functional areas of ESA, including Mission Design, Quality Assurance, Long-Term Data Preservation, and the Open Space Innovation Platform.
arXiv Detail & Related papers (2022-10-07T15:50:17Z) - Core Challenges in Embodied Vision-Language Planning [9.190245973578698]
We discuss Embodied Vision-Language Planning tasks, a family of prominent embodied navigation and manipulation problems.
We propose a taxonomy to unify these tasks and provide an analysis and comparison of the new and current algorithmic approaches.
We advocate for task construction that enables model generalizability and furthers real-world deployment.
arXiv Detail & Related papers (2021-06-26T05:18:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.