Inference and Visualization of Community Structure in Attributed Hypergraphs Using Mixed-Membership Stochastic Block Models
- URL: http://arxiv.org/abs/2401.00688v2
- Date: Sun, 04 May 2025 16:33:59 GMT
- Title: Inference and Visualization of Community Structure in Attributed Hypergraphs Using Mixed-Membership Stochastic Block Models
- Authors: Kazuki Nakajima, Takeaki Uno,
- Abstract summary: We propose a framework, HyperNEO, that combines mixed-membership block models for hypergraphs with dimensionality reduction methods.<n>Our approach generates a node layout that largely preserves the community memberships of nodes.
- Score: 2.8237889121096034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraphs represent complex systems involving interactions among more than two entities and allow the investigation of higher-order structure and dynamics in complex systems. Node attribute data, which often accompanies network data, can enhance the inference of community structure in complex systems. While mixed-membership stochastic block models have been employed to infer community structure in hypergraphs, they complicate the visualization and interpretation of inferred community structure by assuming that nodes may possess soft community memberships. In this study, we propose a framework, HyperNEO, that combines mixed-membership stochastic block models for hypergraphs with dimensionality reduction methods. Our approach generates a node layout that largely preserves the community memberships of nodes. We evaluate our framework on both synthetic and empirical hypergraphs with node attributes. We expect our framework will broaden the investigation and understanding of higher-order community structure in complex systems.
Related papers
- Broad Spectrum Structure Discovery in Large-Scale Higher-Order Networks [1.7273380623090848]
We introduce a class of probabilistic models that efficiently represents and discovers a broad spectrum of mesoscale structure in large-scale hypergraphs.<n>By modeling observed node interactions through latent interactions among classes using low-rank representations, our approach tractably captures rich structural patterns.<n>Our model improves link prediction over state-of-the-art methods and discovers interpretable structures in diverse real-world systems.
arXiv Detail & Related papers (2025-05-27T20:34:58Z) - Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure [0.9208007322096532]
We propose a novel dynamic network model to capture evolving latent communities within temporal networks.
Our model enables the inferred community structure to merge, split, and interact with one another, providing a comprehensive understanding of complex network dynamics.
arXiv Detail & Related papers (2024-11-18T12:48:15Z) - Uncovering the hidden core-periphery structure in hyperbolic networks [0.0]
hyperbolic network models exhibit fundamental and essential features, like small-worldness, scale-freeness, high-clustering coefficient, and community structure.
In this paper, we explore the presence of an important feature, the core-periphery structure, in the hyperbolic network models.
arXiv Detail & Related papers (2024-06-28T14:39:21Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
Community detection is a critical challenge in analysing real graphs.
This article proposes three new, general, hierarchical frameworks to deal with this task.
We compare over a hundred module combinations on the Block Model graphs and real-life datasets.
arXiv Detail & Related papers (2023-03-21T22:12:53Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
Graph Neural Networks (GNNs) are de facto solutions to structural data learning.
Existing graph structure learning (GSL) frameworks still lack robustness and interpretability.
This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree.
arXiv Detail & Related papers (2023-03-17T05:20:24Z) - Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs [0.0]
mesoscale structures are integral part of the abstraction and analysis of complex systems.
They can represent communities in social or citation networks, roles in corporate interactions, or core-periphery structures in transportation networks.
We derive a Bayesian approach that simultaneously models the optimal partitioning of nodes in groups and the optimal higher-order network dynamics.
arXiv Detail & Related papers (2023-01-16T12:45:33Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Topological Deep Learning: Going Beyond Graph Data [26.325857542512047]
We present a unifying deep learning framework built upon a richer data structure that includes widely adopted topological domains.
Specifically, we first introduce complexes, a novel type of topological domain.
We develop a class of message-passing complex neural networks (CCNNs) focusing primarily on attention-based CCNNs.
arXiv Detail & Related papers (2022-06-01T16:21:28Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations.
We present a novel semi-supervised approach for structure-aware representation learning on multiplex networks.
arXiv Detail & Related papers (2021-10-05T13:37:43Z) - A Generative Node-attribute Network Model for Detecting Generalized
Structure [6.151348127802708]
We propose a principle model (named GNAN) which can generate both topology information and attribute information.
The new model can detect not only community structure, but also a range of other types of structure in networks.
Experiments on both synthetic and real-world networks show that the new model is competitive with other state-of-the-art models.
arXiv Detail & Related papers (2021-06-05T12:07:04Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.