Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure
- URL: http://arxiv.org/abs/2411.11536v1
- Date: Mon, 18 Nov 2024 12:48:15 GMT
- Title: Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure
- Authors: Xincan Yu, Sikun Yang,
- Abstract summary: We propose a novel dynamic network model to capture evolving latent communities within temporal networks.
Our model enables the inferred community structure to merge, split, and interact with one another, providing a comprehensive understanding of complex network dynamics.
- Score: 0.9208007322096532
- License:
- Abstract: We propose a novel dynamic network model to capture evolving latent communities within temporal networks. To achieve this, we decompose each observed dynamic edge between vertices using a Poisson-gamma edge partition model, assigning each vertex to one or more latent communities through \emph{nonnegative} vertex-community memberships. Specifically, hierarchical transition kernels are employed to model the interactions between these latent communities in the observed temporal network. A hierarchical graph prior is placed on the transition structure of the latent communities, allowing us to model how they evolve and interact over time. Consequently, our dynamic network enables the inferred community structure to merge, split, and interact with one another, providing a comprehensive understanding of complex network dynamics. Experiments on various real-world network datasets demonstrate that the proposed model not only effectively uncovers interpretable latent structures but also surpasses other state-of-the art dynamic network models in the tasks of link prediction and community detection.
Related papers
- Inferring community structure in attributed hypergraphs using stochastic
block models [3.335932527835653]
We develop a statistical framework that incorporates node attribute data into the learning of community structure in a hypergraph.
We demonstrate that our model, which we refer to as HyperNEO, enhances the learning of community structure in synthetic and empirical hypergraphs.
We expect that our framework will broaden the investigation and understanding of higher-order community structure in real-world complex systems.
arXiv Detail & Related papers (2024-01-01T07:31:32Z) - Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs [0.0]
mesoscale structures are integral part of the abstraction and analysis of complex systems.
They can represent communities in social or citation networks, roles in corporate interactions, or core-periphery structures in transportation networks.
We derive a Bayesian approach that simultaneously models the optimal partitioning of nodes in groups and the optimal higher-order network dynamics.
arXiv Detail & Related papers (2023-01-16T12:45:33Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Visual Concept Reasoning Networks [93.99840807973546]
A split-transform-merge strategy has been broadly used as an architectural constraint in convolutional neural networks for visual recognition tasks.
We propose to exploit this strategy and combine it with our Visual Concept Reasoning Networks (VCRNet) to enable reasoning between high-level visual concepts.
Our proposed model, VCRNet, consistently improves the performance by increasing the number of parameters by less than 1%.
arXiv Detail & Related papers (2020-08-26T20:02:40Z) - GRADE: Graph Dynamic Embedding [76.85156209917932]
GRADE is a probabilistic model that learns to generate evolving node and community representations by imposing a random walk prior to their trajectories.
Our model also learns node community membership which is updated between time steps via a transition matrix.
Experiments demonstrate GRADE outperforms baselines in dynamic link prediction, shows favourable performance on dynamic community detection, and identifies coherent and interpretable evolving communities.
arXiv Detail & Related papers (2020-07-16T01:17:24Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.