論文の概要: MultiFusionNet: Multilayer Multimodal Fusion of Deep Neural Networks for
Chest X-Ray Image Classification
- arxiv url: http://arxiv.org/abs/2401.00728v1
- Date: Mon, 1 Jan 2024 11:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 16:10:17.387730
- Title: MultiFusionNet: Multilayer Multimodal Fusion of Deep Neural Networks for
Chest X-Ray Image Classification
- Title(参考訳): multifusionnet:胸部x線画像分類のためのディープニューラルネットワークの多層マルチモーダル融合
- Authors: Saurabh Agarwal, K. V. Arya, Yogesh Kumar Meena
- Abstract要約: 畳み込みニューラルネットワーク(CNN)を用いた自動システムは胸部X線画像分類の精度と効率を向上させることを約束している。
本稿では,異なる層から特徴を抽出し,それらを融合させる深層学習に基づく多層核融合モデルを提案する。
提案モデルでは,3クラス分類と2クラス分類の両方において,97.21%,99.60%の精度を実現している。
- 参考スコア(独自算出の注目度): 16.479941416339265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest X-ray imaging is a critical diagnostic tool for identifying pulmonary
diseases. However, manual interpretation of these images is time-consuming and
error-prone. Automated systems utilizing convolutional neural networks (CNNs)
have shown promise in improving the accuracy and efficiency of chest X-ray
image classification. While previous work has mainly focused on using feature
maps from the final convolution layer, there is a need to explore the benefits
of leveraging additional layers for improved disease classification. Extracting
robust features from limited medical image datasets remains a critical
challenge. In this paper, we propose a novel deep learning-based multilayer
multimodal fusion model that emphasizes extracting features from different
layers and fusing them. Our disease detection model considers the
discriminatory information captured by each layer. Furthermore, we propose the
fusion of different-sized feature maps (FDSFM) module to effectively merge
feature maps from diverse layers. The proposed model achieves a significantly
higher accuracy of 97.21% and 99.60% for both three-class and two-class
classifications, respectively. The proposed multilayer multimodal fusion model,
along with the FDSFM module, holds promise for accurate disease classification
and can also be extended to other disease classifications in chest X-ray
images.
- Abstract(参考訳): 胸部X線画像は肺疾患を診断するための重要な診断ツールである。
しかし、これらの画像の手動解釈は時間がかかり、エラーが発生しやすい。
畳み込みニューラルネットワーク(cnns)を用いた自動システムでは,胸部x線画像分類の精度と効率の向上が期待できる。
これまでの研究は主に最終畳み込み層の特徴マップの利用に重点を置いてきたが、病気分類の改善のために追加レイヤを活用するメリットを検討する必要がある。
限られた医療画像データセットから堅牢な特徴を抽出することは、依然として重要な課題である。
本稿では,異なる層から特徴を抽出し,それらを融合させる深層学習に基づく多層核融合モデルを提案する。
本モデルでは,各層が捉えた識別情報を考察する。
さらに,様々な層から特徴マップを効果的にマージするために,fdsfmモジュールの融合を提案する。
提案モデルでは,3クラス分類と2クラス分類の両方において,97.21%,99.60%の精度を実現している。
提案した多層核融合モデルとFDSFMモジュールは、正確な疾患分類を約束し、胸部X線画像の他の疾患分類にも拡張することができる。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
解釈可能なディープラーニングモデルは、画像認識の分野で広く注目を集めている。
提案されている多くの解釈可能性モデルは、医用画像診断の精度と解釈性に問題がある。
これらの問題を解決するために,機能駆動型推論ネットワーク(FeaInfNet)を提案する。
論文 参考訳(メタデータ) (2023-12-04T13:09:00Z) - Multi-modal Medical Neurological Image Fusion using Wavelet Pooled Edge
Preserving Autoencoder [3.3828292731430545]
本稿では,エッジ保存型高密度オートエンコーダネットワークに基づくマルチモーダル医用画像に対するエンドツーエンド非教師付き核融合モデルを提案する。
提案モデルでは,特徴マップのウェーブレット分解に基づくアテンションプールを用いて特徴抽出を改善する。
提案モデルでは,ソース画像の強度分布の把握を支援する様々な医用画像ペアを訓練する。
論文 参考訳(メタデータ) (2023-10-18T11:59:35Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - HiFuse: Hierarchical Multi-Scale Feature Fusion Network for Medical
Image Classification [16.455887856811465]
本稿では,医用画像分類のためのHiFuseと呼ばれる3分岐階層型マルチスケール機能融合ネットワーク構造を提案する。
提案したISICデータセットの精度はベースラインより7.6%高く、Covid-19データセットは21.5%、Kvasirデータセットは10.4%である。
論文 参考訳(メタデータ) (2022-09-21T09:30:20Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - (M)SLAe-Net: Multi-Scale Multi-Level Attention embedded Network for
Retinal Vessel Segmentation [0.0]
マルチステージ処理の課題に対処するため,マルチスケールでマルチレベルなCNNアーキテクチャ((M)SLAe-Net)を提案する。
我々は、複数のスケールとネットワークの複数のレベルの特徴を抽出することで、我々のモデルが局所的およびグローバル的特徴を全体的に抽出することを可能にする。
D-DPPモジュールは細管に効率よくタスク特異的な損失機能を持たせることで,クロスデータ性能の向上を実現した。
論文 参考訳(メタデータ) (2021-09-05T14:29:00Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。