論文の概要: Temporal Validity Change Prediction
- arxiv url: http://arxiv.org/abs/2401.00779v1
- Date: Mon, 1 Jan 2024 14:58:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 15:59:42.658344
- Title: Temporal Validity Change Prediction
- Title(参考訳): 時間的妥当性変化予測
- Authors: Georg Wenzel and Adam Jatowt
- Abstract要約: 既存のベンチマークタスクは、1つのステートメントの時間的妥当性を識別するモデルを必要とする。
多くの場合、利用可能なテキストストリームから、ストーリー中の文やソーシャルメディアプロファイル上の投稿などの追加の文脈情報を集めることができる。
本稿では,このような変化を誘発する文脈文を検出する機械学習モデルの能力をベンチマークした自然言語処理タスクである時間的妥当性変化予測を提案する。
- 参考スコア(独自算出の注目度): 20.108317515225504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal validity is an important property of text that is useful for many
downstream applications, such as recommender systems, conversational AI, or
story understanding. Existing benchmarking tasks often require models to
identify the temporal validity duration of a single statement. However, in many
cases, additional contextual information, such as sentences in a story or posts
on a social media profile, can be collected from the available text stream.
This contextual information may greatly alter the duration for which a
statement is expected to be valid. We propose Temporal Validity Change
Prediction, a natural language processing task benchmarking the capability of
machine learning models to detect contextual statements that induce such
change. We create a dataset consisting of temporal target statements sourced
from Twitter and crowdsource sample context statements. We then benchmark a set
of transformer-based language models on our dataset. Finally, we experiment
with temporal validity duration prediction as an auxiliary task to improve the
performance of the state-of-the-art model.
- Abstract(参考訳): 時間的妥当性は、レコメンダシステム、会話AI、ストーリー理解など、多くの下流アプリケーションに有用なテキストの重要な特性である。
既存のベンチマークタスクでは、モデルが単一のステートメントの時間的有効期間を特定する必要がある。
しかし、多くの場合、ストーリーの文章やソーシャルメディアのプロフィールへの投稿などの追加の文脈情報は、利用可能なテキストストリームから収集することができる。
この文脈情報は、文が有効と期待される期間を大きく変える可能性がある。
本稿では,このような変化を誘発する文脈文を検出する機械学習モデルの能力をベンチマークした自然言語処理タスクである時間的妥当性変化予測を提案する。
我々はTwitterとクラウドソースのサンプルコンテキストステートメントから得られた時間的ターゲットステートメントからなるデータセットを作成する。
次に、データセット上でトランスフォーマーベースの言語モデルをベンチマークします。
最後に,最先端モデルの性能向上のための補助タスクとして,時間的有効期間予測を実験する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models [24.784375155633427]
BiTimeBERT 2.0は、テンポラリニュース記事コレクションに事前トレーニングされた新しい言語モデルである。
それぞれの目的は、時間情報のユニークな側面を目標としている。
その結果、BiTimeBERT 2.0はBERTや他の既存のトレーニング済みモデルよりも優れています。
論文 参考訳(メタデータ) (2024-06-04T00:30:37Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - An Overview Of Temporal Commonsense Reasoning and Acquisition [20.108317515225504]
時間的コモンセンス推論(英: Temporal Commonsense reasoning)とは、フレーズ、行動、出来事の典型的な時間的文脈を理解する能力である。
大規模言語モデルの性能に関する最近の研究は、しばしば推論においてショートカットを行い、単純な言語トラップに陥ることが示唆されている。
論文 参考訳(メタデータ) (2023-07-28T01:30:15Z) - Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating
Generalization Capacity of Language Models [18.874880342410876]
本稿では、時間的推測に焦点を当てた日本のベンチマークであるJampを紹介する。
我々のデータセットには時間的推論パターンが含まれており、きめ細かい分析を行うことができます。
時制フラグメントに基づいてデータセットを分割することにより,単言語/多言語LMの一般化能力を評価する。
論文 参考訳(メタデータ) (2023-06-19T07:00:14Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - Temporal Attention for Language Models [24.34396762188068]
本稿では,トランスアーキテクチャのキーコンポーネントである自己注意機構を拡張し,時間的注意を喚起する。
時間的注意は、任意のトランスモデルに適用することができ、入力テキストに関連する時間ポイントを添付する必要がある。
我々はこれらの表現を意味変化検出のタスクに活用する。
提案したモデルでは,すべてのデータセットに対して最先端の結果が得られた。
論文 参考訳(メタデータ) (2022-02-04T11:55:34Z) - Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis [68.76620947298595]
テキストは音声形式を完全には規定しないので、テキストから音声へのモデルは、対応するテキストで説明されない方法で異なる音声データから学習できなければならない。
韻律の3つの一次音響相関に明示的に条件付けされた音声を生成するモデルを提案する。
論文 参考訳(メタデータ) (2021-06-15T18:03:48Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
検索システムからの情報を学習済みの言語モデルと純粋に教師なしの方法で統合する。
この方法で事前学習された言語モデルを拡張することで、性能が劇的に向上し、教師なしにもかかわらず、結果として得られるシステムは、教師なしの機械読解ベースラインと競合する、と報告する。
論文 参考訳(メタデータ) (2020-05-10T09:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。