論文の概要: ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention
- arxiv url: http://arxiv.org/abs/2401.00912v2
- Date: Thu, 18 Jul 2024 06:02:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:41:25.981972
- Title: ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention
- Title(参考訳): ScatterFormer: Scattered Linear Attention 付き効率的なVoxel Transformer
- Authors: Chenhang He, Ruihuang Li, Guowen Zhang, Lei Zhang,
- Abstract要約: ウィンドウベースのトランスフォーマーは、安価な注意計算でコンテキスト認識表現をキャプチャすることで、大規模クラウド理解において優れている。
既存のメソッドは、ウィンドウ内のボクセルを広範囲のソートとパディング操作を通じて固定長のシーケンスにグループ化する。
ScatterFormerは、異なるウィンドウにまたがるvoxelに直接、単一のシーケンスとして注意を向ける最初の方法です。
- 参考スコア(独自算出の注目度): 13.36619701679949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Window-based transformers excel in large-scale point cloud understanding by capturing context-aware representations with affordable attention computation in a more localized manner. However, the sparse nature of point clouds leads to a significant variance in the number of voxels per window. Existing methods group the voxels in each window into fixed-length sequences through extensive sorting and padding operations, resulting in a non-negligible computational and memory overhead. In this paper, we introduce ScatterFormer, which to the best of our knowledge, is the first to directly apply attention to voxels across different windows as a single sequence. The key of ScatterFormer is a Scattered Linear Attention (SLA) module, which leverages the pre-computation of key-value pairs in linear attention to enable parallel computation on the variable-length voxel sequences divided by windows. Leveraging the hierarchical structure of GPUs and shared memory, we propose a chunk-wise algorithm that reduces the SLA module's latency to less than 1 millisecond on moderate GPUs. Furthermore, we develop a cross-window interaction module that improves the locality and connectivity of voxel features across different windows, eliminating the need for extensive window shifting. Our proposed ScatterFormer demonstrates 73.8 mAP (L2) on the Waymo Open Dataset and 72.4 NDS on the NuScenes dataset, running at an outstanding detection rate of 23 FPS.The code is available at \href{https://github.com/skyhehe123/ScatterFormer}{https://github.com/skyhehe123/ScatterFormer}.
- Abstract(参考訳): ウィンドウベースのトランスフォーマーは、より局所的な方法で、安価な注意計算でコンテキスト認識表現をキャプチャすることで、大規模クラウド理解において優れている。
しかし、点雲のスパースの性質は、窓当たりのボクセルの数に大きなばらつきをもたらす。
既存の方法では、ウィンドウ内のボクセルを広範囲のソートとパディング操作によって固定長のシーケンスに分類し、計算とメモリのオーバーヘッドは無視できない。
本稿では,ScatterFormerについて紹介する。ScatterFormerは,複数のウィンドウにまたがるボクセルに直接,単一のシーケンスとして注意を向ける最初の方法である。
ScatterFormer の鍵は Scattered Linear Attention (SLA) モジュールであり、これは線形注意におけるキーと値のペアの事前計算を利用して、ウィンドウで分割された可変長のボクセル列の並列計算を可能にする。
本稿では,GPUの階層構造と共有メモリを活用することで,SLAモジュールのレイテンシを適度なGPU上で1ミリ秒未満に削減するチャンクワイズアルゴリズムを提案する。
さらに,異なるウィンドウにまたがるボクセル機能の局所性と接続性を向上し,広範囲なウィンドウシフトを不要とするクロスウィンドウインタラクションモジュールを開発した。
提案したScatterFormerは、Waymo Open Dataset上で73.8 mAP (L2)、NuScenesデータセット上で72.4 NDSを、23 FPSの優れた検出速度で実行し、コードは現在、 \href{https://github.com/skyhehe123/ScatterFormer}{https://github.com/skyhehe123/ScatterFormer}で公開されている。
関連論文リスト
- FlatFormer: Flattened Window Attention for Efficient Point Cloud
Transformer [30.596658616831945]
トランスフォーマーはCNNに代わるものとして、多くのモダリティで有効であることが証明されている。
本稿では、FlatFormerを用いて、空間近接を交換することで、より優れた計算正則性を実現することにより、このレイテンシギャップを解消する。
論文 参考訳(メタデータ) (2023-01-20T18:59:57Z) - DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets [95.84755169585492]
本研究では,屋外3次元知覚のためのシングルストライドウィンドウベースのボクセルトランスであるDynamic Sparse Voxel Transformer (DSVT)を提案する。
本モデルでは,3次元認識タスクを多岐にわたって行うことにより,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-01-15T09:31:58Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
タスクベース分散システム上でNumPyのような表現を最適化する配列プログラミングライブラリであるNumSを提案する。
これはLoad Simulated Hierarchical Scheduling (LSHS)と呼ばれる新しいスケジューラによって実現される。
LSHSは、ネットワーク負荷を2倍減らし、メモリを4倍減らし、ロジスティック回帰問題において実行時間を10倍減らし、Rayの性能を向上させる。
論文 参考訳(メタデータ) (2022-06-28T20:13:40Z) - Green Hierarchical Vision Transformer for Masked Image Modeling [54.14989750044489]
階層型視覚変換器(ViT)を用いたマスク付き画像モデリングのための効率的な手法を提案する。
グループウィンドウのアテンションスキームは,ディバイド・アンド・コンカエ戦略に従って設計する。
グループ化されたパッチに対する注意の全体的なコストを最小限に抑えるため、動的プログラミングアルゴリズムによるグループ化戦略をさらに改善する。
論文 参考訳(メタデータ) (2022-05-26T17:34:42Z) - MixFormer: Mixing Features across Windows and Dimensions [68.86393312123168]
ローカルウインドウの自己注意は視覚タスクにおいて顕著に機能するが、限定的な受容野と弱いモデリング能力の問題に悩まされている。
これは主に、オーバーラップされていないウィンドウ内で自己注意を行い、チャネル次元に重みを共有するためである。
局所窓の自己アテンションと深度ワイドの畳み込みを並列設計で組み合わせ, クロスウィンドウ接続をモデル化し, 受容場を拡大する。
論文 参考訳(メタデータ) (2022-04-06T03:13:50Z) - Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from
Point Clouds [16.69887974230884]
Transformerは多くの2次元視覚タスクで有望なパフォーマンスを示した。
ポイントクラウドは長いシーケンスであり、3D空間に不均一に分散しているため、大規模なポイントクラウドデータの自己アテンションを計算するのは困難である。
既存の方法は、通常、ポイントを同じ大きさのクラスタにグループ化したり、離散化された表現に対して畳み込み的な自己アテンションを実行することによって、自己アテンションを局所的に計算する。
本稿では,Voxel Set Transformer (VoxSeT) と呼ばれる新しいボクセルベースアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-19T12:31:46Z) - Fast Point Voxel Convolution Neural Network with Selective Feature
Fusion for Point Cloud Semantic Segmentation [7.557684072809662]
本稿では,ポイントクラウド解析のための軽量畳み込みニューラルネットワークを提案する。
本手法はサンプリングなしで全点集合上で動作し,効率よく性能を向上する。
論文 参考訳(メタデータ) (2021-09-23T19:39:01Z) - RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR
Point Cloud Segmentation [28.494690309193068]
RPVNetと呼ばれる、新しいレンジポイント・ボクセル融合ネットワークを提案する。
このネットワークでは,これら3つの視点を相互に相互に相互作用する深層融合フレームワークを考案する。
この効率的な相互作用と比較的低いボクセル解像度を利用することで、より効率的であることが証明された。
論文 参考訳(メタデータ) (2021-03-24T04:24:12Z) - Cluster-Former: Clustering-based Sparse Transformer for Long-Range
Dependency Encoding [90.77031668988661]
Cluster-Formerはクラスタリングベースの新しいスパーストランスであり、チャンクされたシーケンスにまたがって注意を向ける。
提案されたフレームワークは、Sliding-Window LayerとCluster-Former Layerの2つのユニークなタイプのTransformer Layerにピボットされている。
実験によると、Cluster-Formerはいくつかの主要なQAベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-13T22:09:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。