Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2401.00916v1
- Date: Mon, 1 Jan 2024 06:53:36 GMT
- Title: Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
- Authors: Mohamad Abed El Rahman Hammoud and Naila Raboudi and Edriss S. Titi
and Omar Knio and Ibrahim Hoteit
- Abstract summary: Data assimilation plays a pivotal role in diverse applications, ranging from climate predictions and weather forecasts to trajectory planning for autonomous vehicles.
Recent advancements have seen the emergence of deep learning approaches in this domain, primarily within a supervised learning framework.
In this study, we introduce a novel DA strategy that utilizes reinforcement learning (RL) to apply state corrections using full or partial observations of the state variables.
- Score: 0.5999777817331317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data assimilation (DA) plays a pivotal role in diverse applications, ranging
from climate predictions and weather forecasts to trajectory planning for
autonomous vehicles. A prime example is the widely used ensemble Kalman filter
(EnKF), which relies on linear updates to minimize variance among the ensemble
of forecast states. Recent advancements have seen the emergence of deep
learning approaches in this domain, primarily within a supervised learning
framework. However, the adaptability of such models to untrained scenarios
remains a challenge. In this study, we introduce a novel DA strategy that
utilizes reinforcement learning (RL) to apply state corrections using full or
partial observations of the state variables. Our investigation focuses on
demonstrating this approach to the chaotic Lorenz '63 system, where the agent's
objective is to minimize the root-mean-squared error between the observations
and corresponding forecast states. Consequently, the agent develops a
correction strategy, enhancing model forecasts based on available system state
observations. Our strategy employs a stochastic action policy, enabling a Monte
Carlo-based DA framework that relies on randomly sampling the policy to
generate an ensemble of assimilated realizations. Results demonstrate that the
developed RL algorithm performs favorably when compared to the EnKF.
Additionally, we illustrate the agent's capability to assimilate non-Gaussian
data, addressing a significant limitation of the EnKF.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - SAMBO-RL: Shifts-aware Model-based Offline Reinforcement Learning [9.88109749688605]
Model-based Offline Reinforcement Learning trains policies based on offline datasets and model dynamics.
This paper disentangles the problem into two key components: model bias and policy shift.
We introduce Shifts-aware Model-based Offline Reinforcement Learning (SAMBO-RL)
arXiv Detail & Related papers (2024-08-23T04:25:09Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift [28.73747033245012]
We introduce a universal calibration methodology for the detection and adaptation of context-driven distribution shifts.
A novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", quantifies the model's vulnerability to CDS.
A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation.
arXiv Detail & Related papers (2023-10-23T11:58:01Z) - Boosted Control Functions [10.503777692702952]
This work aims to bridge the gap between causal effect estimation and prediction tasks.
We establish a novel connection between the field of distribution from machine learning, and simultaneous equation models and control function from econometrics.
Within this framework, we propose a strong notion of invariance for a predictive model and compare it with existing (weaker) versions.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm
Deployed in Ridehailing Marketplace [12.298997392937876]
This study proposes a real-time dispatching algorithm based on reinforcement learning.
It is deployed online in multiple cities under DiDi's operation for A/B testing and is launched in one of the major international markets.
The deployed algorithm shows over 1.3% improvement in total driver income from A/B testing.
arXiv Detail & Related papers (2022-02-10T16:07:17Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.