Robust single-particle cryo-EM image denoising and restoration
- URL: http://arxiv.org/abs/2401.01097v1
- Date: Tue, 2 Jan 2024 08:33:36 GMT
- Title: Robust single-particle cryo-EM image denoising and restoration
- Authors: Jing Zhang, Tengfei Zhao, ShiYu Hu, Xin Zhao
- Abstract summary: Cryo-electron microscopy (cryo-EM) has achieved near-atomic level resolution of biomolecules by reconstructing 2D micrographs.
However, the resolution and accuracy of the reconstructed particles are significantly reduced due to the extremely low signal-to-noise ratio (SNR) and complex noise structure of cryo-EM images.
We introduce a diffusion model with post-processing framework to effectively denoise and restore single particle cryo-EM images.
- Score: 11.173867153077692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryo-electron microscopy (cryo-EM) has achieved near-atomic level resolution
of biomolecules by reconstructing 2D micrographs. However, the resolution and
accuracy of the reconstructed particles are significantly reduced due to the
extremely low signal-to-noise ratio (SNR) and complex noise structure of
cryo-EM images. In this paper, we introduce a diffusion model with
post-processing framework to effectively denoise and restore single particle
cryo-EM images. Our method outperforms the state-of-the-art (SOTA) denoising
methods by effectively removing structural noise that has not been addressed
before. Additionally, more accurate and high-resolution three-dimensional
reconstruction structures can be obtained from denoised cryo-EM images.
Related papers
- CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference [30.195615398809043]
Cryo-EM is an increasingly popular method for determining the atomic resolution 3D structure of macromolecular complexes.
Recent developments in cryo-EM have focused on deep learning for which amortized inference has been used to predict pose.
Here, we propose a new semi-amortized method, cryoSPIN, in which reconstruction begins with amortized inference and then switches to a form of auto-decoding.
arXiv Detail & Related papers (2024-06-15T00:44:32Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - CryoGEM: Physics-Informed Generative Cryo-Electron Microscopy [38.57626501108458]
We introduce physics-informed generative cryo-electron microscopy (CryoGEM)
CryoGEM integrates physics-based cryo-EM simulation with a generative unpaired noise translation to generate realistic noises.
Experiments show that CryoGEM is capable of generating authentic cryo-EM images.
arXiv Detail & Related papers (2023-12-04T07:52:56Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D
Molecular Volumes from Real Cryo-EM Images [30.738209997049395]
We introduce cryoAI, an ab initio reconstruction algorithm for homogeneous conformations that uses gradient-based optimization of particle poses and the electron scattering potential from single-particle cryo-EM data.
CryoAI achieves results on par with state-of-the-art cryo-EM solvers for both simulated and experimental data, one order of magnitude faster for large datasets and with significantly lower memory requirements than existing methods.
arXiv Detail & Related papers (2022-03-15T17:58:03Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Cryo-ZSSR: multiple-image super-resolution based on deep internal
learning [14.818511430476589]
Single-particle cryo-electron microscopy (cryo-EM) is an emerging imaging modality capable of visualizing proteins and macro-molecular complexes at near-atomic resolution.
We present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions.
Our results indicate that the combination of low magnification imaging with image SR has the potential to accelerate cryo-EM data collection without sacrificing resolution.
arXiv Detail & Related papers (2020-11-22T14:04:54Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
We propose blur, noise, and compression robust GAN (BNCR-GAN) to learn a clean image generator directly from degraded images.
Inspired by NR-GAN, BNCR-GAN uses a multiple-generator model composed of image, blur- Kernel, noise, and quality-factor generators.
We demonstrate the effectiveness of BNCR-GAN through large-scale comparative studies on CIFAR-10 and a generality analysis on FFHQ.
arXiv Detail & Related papers (2020-03-17T17:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.