論文の概要: Q-Refine: A Perceptual Quality Refiner for AI-Generated Image
- arxiv url: http://arxiv.org/abs/2401.01117v1
- Date: Tue, 2 Jan 2024 09:11:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-01-03 14:24:40.655195
- Title: Q-Refine: A Perceptual Quality Refiner for AI-Generated Image
- Title(参考訳): Q-Refine:AI生成画像の知覚品質リファイナ
- Authors: Chunyi Li, Haoning Wu, Zicheng Zhang, Hongkun Hao, Kaiwei Zhang, Lei
Bai, Xiaohong Liu, Xiongkuo Min, Weisi Lin, Guangtao Zhai
- Abstract要約: Q-Refineという品質改善手法を提案する。
画像品質評価(IQA)メトリクスを使用して、初めて精錬プロセスをガイドする。
忠実度と美的品質の両方からAIGIを最適化するための一般的な精錬機となる。
- 参考スコア(独自算出の注目度): 85.89840673640028
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid evolution of the Text-to-Image (T2I) model in recent years,
their unsatisfactory generation result has become a challenge. However,
uniformly refining AI-Generated Images (AIGIs) of different qualities not only
limited optimization capabilities for low-quality AIGIs but also brought
negative optimization to high-quality AIGIs. To address this issue, a
quality-award refiner named Q-Refine is proposed. Based on the preference of
the Human Visual System (HVS), Q-Refine uses the Image Quality Assessment (IQA)
metric to guide the refining process for the first time, and modify images of
different qualities through three adaptive pipelines. Experimental shows that
for mainstream T2I models, Q-Refine can perform effective optimization to AIGIs
of different qualities. It can be a general refiner to optimize AIGIs from both
fidelity and aesthetic quality levels, thus expanding the application of the
T2I generation models.
- Abstract(参考訳): 近年,テキスト・ツー・イメージ(t2i)モデルの急速な進化に伴い,その不満足な生成結果が課題となっている。
しかし、低品質のAIGIに対する限られた最適化能力だけでなく、高品質のAIGIにも負の最適化をもたらした。
この問題に対処するためにQ-Refineという品質改善手法を提案する。
人間の視覚システム(hvs)の好みに基づいて、q-refineは画像品質評価(iqa)メトリクスを使用して、初めて精錬プロセスをガイドし、3つの適応パイプラインを通じて異なる品質の画像を修正する。
実験によると、主流のT2Iモデルでは、Q-Refineは異なる品質のAIGIに対して効果的な最適化を行うことができる。
忠実度と美的品質の両方からAIGIを最適化し、T2I生成モデルの応用を拡大する一般的な精錬機となる。
関連論文リスト
- IQPFR: An Image Quality Prior for Blind Face Restoration and Beyond [56.99331967165238]
Blind Face Restoration (BFR)は、劣化した低品質(LQ)の顔画像を高品質(HQ)の出力に再構成する課題に対処する。
本研究では,非参照画像品質評価(NR-IQA)モデルから得られた画像品質優先(IQP)を組み込んだ新しいフレームワークを提案する。
提案手法は,複数のベンチマークにおいて最先端技術より優れている。
論文 参考訳(メタデータ) (2025-03-12T11:39:51Z) - IQA-Adapter: Exploring Knowledge Transfer from Image Quality Assessment to Diffusion-based Generative Models [0.5356944479760104]
画像品質評価(IQA)モデルを拡散型ジェネレータに統合する手法を提案する。
拡散モデルはIQAモデルの出力と内部アクティベーションの両方から複雑な定性的関係を学習できることを示す。
IQA-Adapterは,画像と品質スコアの暗黙的関係を学習することで,目標品質レベルの生成を条件付ける新しいフレームワークである。
論文 参考訳(メタデータ) (2024-12-02T18:40:19Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - G-Refine: A General Quality Refiner for Text-to-Image Generation [74.16137826891827]
G-Refineは,高画質画像の整合性を損なうことなく,低画質画像の高精細化を図った汎用画像精細機である。
このモデルは、知覚品質指標、アライメント品質指標、一般的な品質向上モジュールの3つの相互接続モジュールで構成されている。
大規模な実験により、G-Refine以降のAIGIは、4つのデータベースで10以上の品質指標でパフォーマンスが向上していることが明らかになった。
論文 参考訳(メタデータ) (2024-04-29T00:54:38Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
非参照画像品質評価(NR-IQA)モデルは、知覚された画像品質を効果的に定量化することができる。
NR-IQAモデルは、画像強調のための最大後部推定(MAP)フレームワークにプラグイン可能であることを示す。
論文 参考訳(メタデータ) (2024-03-11T03:35:41Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
我々はPKU-I2IQAという人間の知覚に基づく画像から画像へのAIGCIQAデータベースを構築した。
本研究では,非参照画像品質評価法に基づくNR-AIGCIQAとフル参照画像品質評価法に基づくFR-AIGCIQAの2つのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2023-11-27T05:53:03Z) - AGIQA-3K: An Open Database for AI-Generated Image Quality Assessment [62.8834581626703]
我々はこれまでに最も包括的な主観的品質データベース AGIQA-3K を構築している。
このデータベース上でベンチマーク実験を行い、現在の画像品質評価(IQA)モデルと人間の知覚との整合性を評価する。
我々は、AGIQA-3Kの微粒な主観的スコアが、その後のAGI品質モデルにヒトの主観的知覚機構に適合するよう促すと信じている。
論文 参考訳(メタデータ) (2023-06-07T18:28:21Z) - A Perceptual Quality Assessment Exploration for AIGC Images [39.72512063793346]
本稿では,AGIの品質評価における技術的問題,AIアーティファクト,不自然さ,不明瞭さ,美学などの主要な評価側面について論じる。
本稿では,拡散モデルから生成される1080個のAGIからなる最初の知覚的AGI品質評価データベース AGIQA-1K について述べる。
論文 参考訳(メタデータ) (2023-03-22T14:59:49Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
本稿では,Swin Transformerに基づく新しいアルゴリズムを提案する。
ローカル機能とグローバル機能の両方から情報を集約して、品質をより正確に予測する。
NTIRE 2022 Perceptual Image Quality Assessment Challengeのノーレファレンストラックで2位。
論文 参考訳(メタデータ) (2022-05-20T11:34:35Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
知覚品質評価(IQA)のための学習ベースアプローチは、通常、知覚品質を正確に測定するために歪んだ画像と参照画像の両方を必要とする。
本研究では,変換器を用いた全参照IQAモデルの性能について検討する。
また,全教師モデルから盲人学生モデルへの半教師付き知識蒸留に基づくIQAの手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T10:21:08Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z) - Comparison of Image Quality Models for Optimization of Image Processing
Systems [41.57409136781606]
我々は、11のフル参照IQAモデルを使用して、4つの低レベル視覚タスクのためにディープニューラルネットワークをトレーニングします。
最適化された画像に対する主観的テストにより、それらの知覚的性能の観点から、競合するモデルのランク付けが可能となる。
論文 参考訳(メタデータ) (2020-05-04T09:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。