Reinforcement Learning for SAR View Angle Inversion with Differentiable
SAR Renderer
- URL: http://arxiv.org/abs/2401.01165v1
- Date: Tue, 2 Jan 2024 11:47:58 GMT
- Title: Reinforcement Learning for SAR View Angle Inversion with Differentiable
SAR Renderer
- Authors: Yanni Wang, Hecheng Jia, Shilei Fu, Huiping Lin, Feng Xu
- Abstract summary: This study aims to reverse radar view angles in synthetic aperture radar (SAR) images given a target model.
An electromagnetic simulator named differentiable SAR render (DSR) is embedded to facilitate the interaction between the agent and the environment.
- Score: 7.112962861847319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electromagnetic inverse problem has long been a research hotspot. This
study aims to reverse radar view angles in synthetic aperture radar (SAR)
images given a target model. Nonetheless, the scarcity of SAR data, combined
with the intricate background interference and imaging mechanisms, limit the
applications of existing learning-based approaches. To address these
challenges, we propose an interactive deep reinforcement learning (DRL)
framework, where an electromagnetic simulator named differentiable SAR render
(DSR) is embedded to facilitate the interaction between the agent and the
environment, simulating a human-like process of angle prediction. Specifically,
DSR generates SAR images at arbitrary view angles in real-time. And the
differences in sequential and semantic aspects between the view
angle-corresponding images are leveraged to construct the state space in DRL,
which effectively suppress the complex background interference, enhance the
sensitivity to temporal variations, and improve the capability to capture
fine-grained information. Additionally, in order to maintain the stability and
convergence of our method, a series of reward mechanisms, such as memory
difference, smoothing and boundary penalty, are utilized to form the final
reward function. Extensive experiments performed on both simulated and real
datasets demonstrate the effectiveness and robustness of our proposed method.
When utilized in the cross-domain area, the proposed method greatly mitigates
inconsistency between simulated and real domains, outperforming reference
methods significantly.
Related papers
- Adaptive Residual Transformation for Enhanced Feature-Based OOD Detection in SAR Imagery [5.63530048112308]
The presence of unknown targets in real battlefield scenarios is unavoidable.
Various feature-based out-of-distribution approaches have been developed to address this issue.
We propose transforming feature-based OOD detection into a class-localized feature-residual-based approach.
arXiv Detail & Related papers (2024-11-01T00:09:02Z) - MODEL&CO: Exoplanet detection in angular differential imaging by learning across multiple observations [37.845442465099396]
Most post-processing methods build a model of the nuisances from the target observations themselves.
We propose to build the nuisance model from an archive of multiple observations by leveraging supervised deep learning techniques.
We apply the proposed algorithm to several datasets from the VLT/SPHERE instrument, and demonstrate a superior precision-recall trade-off.
arXiv Detail & Related papers (2024-09-23T09:22:45Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
This study introduces a novel Cascaded Diffusion with Discrepancy Mitigation framework.
It includes the low-quality image generation in latent space and the high-quality image generation in pixel space.
It minimizes computational costs by moving some inference steps from pixel space to latent space.
arXiv Detail & Related papers (2024-03-14T12:58:28Z) - Learning Surface Scattering Parameters From SAR Images Using
Differentiable Ray Tracing [8.19502673278742]
This paper proposes a surface microwave rendering model that comprehensively considers both Specular and Diffuse contributions.
A differentiable ray tracing (DRT) engine based on SAR images was constructed for CSVBSDF surface scattering parameter learning.
The effectiveness of this approach has been validated through simulations and comparisons with real SAR images.
arXiv Detail & Related papers (2024-01-02T12:09:06Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
arXiv Detail & Related papers (2022-11-28T01:28:33Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - RISP: Rendering-Invariant State Predictor with Differentiable Simulation
and Rendering for Cross-Domain Parameter Estimation [110.4255414234771]
Existing solutions require massive training data or lack generalizability to unknown rendering configurations.
We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem.
Our approach achieves significantly lower reconstruction errors and has better generalizability among unknown rendering configurations.
arXiv Detail & Related papers (2022-05-11T17:59:51Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.