Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study
- URL: http://arxiv.org/abs/2211.14990v1
- Date: Mon, 28 Nov 2022 01:28:33 GMT
- Title: Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study
- Authors: Xu Zhan, Xiaoling Zhang, Wensi Zhang, Jun Shi, Shunjun Wei, Tianjiao
Zeng
- Abstract summary: Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
- Score: 5.489791364472879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from a relatively larger aperture's angle, and in combination with
a wide transmitting bandwidth, near-field synthetic aperture radar (SAR)
provides a high-resolution image of a target's scattering distribution-hot
spots. Meanwhile, imaging result suffers inevitable degradation from sidelobes,
clutters, and noises, hindering the information retrieval of the target. To
restore the image, current methods make simplified assumptions; for example,
the point spread function (PSF) is spatially consistent, the target consists of
sparse point scatters, etc. Thus, they achieve limited restoration performance
in terms of the target's shape, especially for complex targets. To address
these issues, a preliminary study is conducted on restoration with the recent
promising deep learning inverse technique in this work. We reformulate the
degradation model into a spatially variable complex-convolution model, where
the near-field SAR's system response is considered. Adhering to it, a
model-based deep learning network is designed to restore the image. A simulated
degraded image dataset from multiple complex target models is constructed to
validate the network. All the images are formulated using the electromagnetic
simulation tool. Experiments on the dataset reveal their effectiveness.
Compared with current methods, superior performance is achieved regarding the
target's shape and energy estimation.
Related papers
- One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
arXiv Detail & Related papers (2024-05-18T13:39:50Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.