A Comprehensive Study of Knowledge Editing for Large Language Models
- URL: http://arxiv.org/abs/2401.01286v4
- Date: Thu, 28 Mar 2024 15:56:55 GMT
- Title: A Comprehensive Study of Knowledge Editing for Large Language Models
- Authors: Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen,
- Abstract summary: Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
- Score: 82.65729336401027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication. However, a primary limitation lies in the significant computational demands during training, arising from their extensive parameterization. This challenge is further intensified by the dynamic nature of the world, necessitating frequent updates to LLMs to correct outdated information or integrate new knowledge, thereby ensuring their continued relevance. Note that many applications demand continual model adjustments post-training to address deficiencies or undesirable behaviors. There is an increasing interest in efficient, lightweight methods for on-the-fly model modifications. To this end, recent years have seen a burgeoning in the techniques of knowledge editing for LLMs, which aim to efficiently modify LLMs' behaviors within specific domains while preserving overall performance across various inputs. In this paper, we first define the knowledge editing problem and then provide a comprehensive review of cutting-edge approaches. Drawing inspiration from educational and cognitive research theories, we propose a unified categorization criterion that classifies knowledge editing methods into three groups: resorting to external knowledge, merging knowledge into the model, and editing intrinsic knowledge. Furthermore, we introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches. Additionally, we provide an in-depth analysis of knowledge location, which can give a deeper understanding of the knowledge structures inherent within LLMs. Finally, we discuss several potential applications of knowledge editing, outlining its broad and impactful implications.
Related papers
- Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
We identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target.
We propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge.
arXiv Detail & Related papers (2024-10-10T11:09:00Z) - How Well Can Knowledge Edit Methods Edit Perplexing Knowledge? [18.022428746019582]
This study investigates the capability of knowledge editing methods to incorporate new knowledge with varying degrees of "perplexingness"
We find significant negative correlations between the "perplexingness" of the new knowledge and the edit efficacy across all 12 scenarios.
Further exploration into the influence of knowledge hierarchy on editing outcomes indicates that knowledge positioned at higher hierarchical levels is more challenging to modify in some scenarios.
arXiv Detail & Related papers (2024-06-25T03:41:02Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
Recent studies have identified side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing.
This survey presents a comprehensive study of these side effects, providing a unified perspective on the challenges of knowledge editing in large language models.
arXiv Detail & Related papers (2024-06-03T15:28:21Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
This paper pioneers the investigation of editing conceptual knowledge for Large Language Models (LLMs)
We construct a novel benchmark dataset ConceptEdit and establish a suite of new metrics for evaluation.
experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge.
arXiv Detail & Related papers (2024-03-10T16:57:10Z) - Online Continual Knowledge Learning for Language Models [3.654507524092343]
Large Language Models (LLMs) serve as repositories of extensive world knowledge, enabling them to perform tasks such as question-answering and fact-checking.
Online Continual Knowledge Learning (OCKL) aims to manage the dynamic nature of world knowledge in LMs under real-time constraints.
arXiv Detail & Related papers (2023-11-16T07:31:03Z) - Knowledge Editing for Large Language Models: A Survey [51.01368551235289]
One major drawback of large language models (LLMs) is their substantial computational cost for pre-training.
Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge.
arXiv Detail & Related papers (2023-10-24T22:18:13Z) - ALCUNA: Large Language Models Meet New Knowledge [48.30457202012987]
We propose an approach that generates new knowledge by altering existing entity attributes and relationships.
With KnowGen, we introduce a benchmark named ALCUNA to assess LLMs' abilities in knowledge understanding, differentiation, and association.
We also explore the impact of entity similarity on the model's understanding of entity knowledge and the influence of contextual entities.
arXiv Detail & Related papers (2023-10-23T11:40:05Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLM is a new benchmark for evaluating knowledge editing of large language models.
Experimental results indicate that the current methods for knowledge editing using raw documents are not effective in yielding satisfactory results.
arXiv Detail & Related papers (2023-08-19T09:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.