Procrustean entanglement concentration in quantum-classical networking
- URL: http://arxiv.org/abs/2401.01311v1
- Date: Tue, 2 Jan 2024 17:53:57 GMT
- Title: Procrustean entanglement concentration in quantum-classical networking
- Authors: Hsuan-Hao Lu, Muneer Alshowkan, Jude Alnas, Joseph M. Lukens, Nicholas
A. Peters
- Abstract summary: We describe and experimentally implement Procrustean entanglement concentration for polarization-entangled states contaminated with classical light.
We demonstrate our technique both on the tabletop and over a deployed quantum local area network, finding a substantial improvement of two-qubit entangled state fidelity.
- Score: 0.605746798865181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of a future quantum internet will rest in part on the ability of
quantum and classical signals to coexist in the same optical fiber
infrastructure, a challenging endeavor given the orders of magnitude
differences in flux of single-photon-level quantum fields and bright classical
traffic. We theoretically describe and experimentally implement Procrustean
entanglement concentration for polarization-entangled states contaminated with
classical light, showing significant mitigation of crosstalk noise in dense
wavelength-division multiplexing. Our approach leverages a pair of
polarization-dependent loss emulators to attenuate highly polarized crosstalk
that results from imperfect isolation of conventional signals copropagating on
shared fiber links. We demonstrate our technique both on the tabletop and over
a deployed quantum local area network, finding a substantial improvement of
two-qubit entangled state fidelity from approximately 75\% to over 92\%. This
local filtering technique could be used as a preliminary step to reduce
asymmetric errors, potentially improving the overall efficiency when combined
with more complex error mitigation techniques in future quantum repeater
networks.
Related papers
- Increasing the secret key rate of satellite-to-ground entanglement-based QKD assisted by adaptive optics [0.48182159227299687]
Future quantum networks will be composed of both terrestrial links for metropolitan and continent-scale connections and space-based links for global coverage and infrastructure resilience.
The propagation of quantum signals through the atmosphere is severely impacted by the effects of turbulence.
This is even more the case for entanglement-based quantum communication protocols requiring two free-space channels to be considered simultaneously.
We show in particular that this improves the performance of entanglement-based quantum key distribution by up to a few hundred bits per second when compared with the uncorrected scenario.
arXiv Detail & Related papers (2024-11-14T16:16:10Z) - Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Metropolitan-scale Entanglement Distribution with Co-existing Quantum
and Classical Signals in a single fiber [0.0]
Development of prototype metropolitan-scale quantum networks involves transmitting quantum information via deployed optical fibers.
One approach addressing these challenges is to co-propagate classical probe signals in the same fiber as the quantum signal.
Here, we demonstrate the distribution of polarization entangled quantum signals co-propagating with the White Rabbit Precision Time Protocol (WR-PTP) classical signals in the same single-core fiber strand at metropolitan-scale distances.
arXiv Detail & Related papers (2024-02-01T14:21:39Z) - Coexistence of multiuser entanglement distribution and classical light
in optical fiber network with a semiconductor chip [12.760148317855275]
Building communication links among multiple users in a scalable and robust way is a key objective in achieving large-scale quantum networks.
Here we fabricate a semiconductor chip with a high figure-of-merit modal overlap to directly generate broadband polarization entanglement.
Our work paves the way for practical multiparty quantum communication with integrated photonic architecture compatible with real-world fiber optical communication network.
arXiv Detail & Related papers (2023-09-26T01:13:54Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Coexistent quantum channel characterization using spectrally resolved
Bayesian quantum process tomography [0.0]
Coexistence of quantum and classical signals over same optical fiber is critical for operating quantum networks.
We systematically characterize the quantum channel that results from simultaneously distributing approximate single-photon polarization-encoded qubits.
arXiv Detail & Related papers (2022-08-30T19:57:45Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.