Coexistence of multiuser entanglement distribution and classical light
in optical fiber network with a semiconductor chip
- URL: http://arxiv.org/abs/2309.14602v1
- Date: Tue, 26 Sep 2023 01:13:54 GMT
- Title: Coexistence of multiuser entanglement distribution and classical light
in optical fiber network with a semiconductor chip
- Authors: Xu Jing, Cheng Qian, Hu Nian, Chenquan Wang, Jie Tang, Xiaowen Gu,
Yuechan Kong, Tangsheng Chen, Yichen Liu, Chong Sheng, Dong Jiang, Bin Niu,
and Liangliang Lu
- Abstract summary: Building communication links among multiple users in a scalable and robust way is a key objective in achieving large-scale quantum networks.
Here we fabricate a semiconductor chip with a high figure-of-merit modal overlap to directly generate broadband polarization entanglement.
Our work paves the way for practical multiparty quantum communication with integrated photonic architecture compatible with real-world fiber optical communication network.
- Score: 12.760148317855275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building communication links among multiple users in a scalable and robust
way is a key objective in achieving large-scale quantum networks. In realistic
scenario, noise from the coexisting classical light is inevitable and can
ultimately disrupt the entanglement. The previous significant fully connected
multiuser entanglement distribution experiments are conducted using dark fiber
links and there is no explicit relation between the entanglement degradations
induced by classical noise and its error rate. Here we fabricate a
semiconductor chip with a high figure-of-merit modal overlap to directly
generate broadband polarization entanglement. Our monolithic source maintains
polarization entanglement fidelity above 96% for 42 nm bandwidth with a
brightness of 1.2*10^7 Hz/mW. We perform a continuously working quantum
entanglement distribution among three users coexisting with classical light.
Under finite-key analysis, we establish secure keys and enable images
encryption as well as quantum secret sharing between users. Our work paves the
way for practical multiparty quantum communication with integrated photonic
architecture compatible with real-world fiber optical communication network.
Related papers
- Procrustean entanglement concentration in quantum-classical networking [0.605746798865181]
We describe and experimentally implement Procrustean entanglement concentration for polarization-entangled states contaminated with classical light.
We demonstrate our technique both on the tabletop and over a deployed quantum local area network, finding a substantial improvement of two-qubit entangled state fidelity.
arXiv Detail & Related papers (2024-01-02T17:53:57Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Entanglement distribution quantum networking within deployed
telecommunications fibre-optic infrastructure [3.793035248285093]
Quantum networks have been shown to connect users with full-mesh topologies without trusted nodes.
We present advancements on our scalable polarisation entanglement-based quantum network testbed.
arXiv Detail & Related papers (2022-11-16T17:10:42Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Realizing an entanglement-based multi-user quantum network with
integrated photonics [7.023079683052248]
Quantum network facilitates the secure transmission of information between different users.
We develop an energy-time entanglement-based dense wavelength division multiplexed network based on an integrated silicon nitride micro-ring resonator.
arXiv Detail & Related papers (2022-06-20T14:06:19Z) - Distributing Polarization Entangled Photon Pairs with High Rate over
Long Distance through Standard Telecommunication Fiber [0.0]
Entanglement distribution over long distances is essential for many quantum communication schemes.
We present entanglement distribution over 50km of standard telecommunication fiber with pair rate more than 10,000 s$-1$ using a bright non-degenerate photon pair source.
arXiv Detail & Related papers (2022-04-22T08:40:19Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Experimental entanglement generation for quantum key distribution beyond
1 Gbit/s [0.0]
We present a source of polarization-entangled photon pairs at telecommunication wavelengths that covers all these needs of real-world quantum-cryptographic applications.
Our source paves the way for high-speed quantum encryption approaching present-day internet bandwidth.
arXiv Detail & Related papers (2021-07-16T08:15:53Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.