TPC-ViT: Token Propagation Controller for Efficient Vision Transformer
- URL: http://arxiv.org/abs/2401.01470v2
- Date: Mon, 8 Jan 2024 17:03:15 GMT
- Title: TPC-ViT: Token Propagation Controller for Efficient Vision Transformer
- Authors: Wentao Zhu
- Abstract summary: Vision transformers (ViTs) have achieved promising results on a variety of Computer Vision tasks.
Previous approaches that employ gradual token reduction to address this challenge assume that token redundancy in one layer implies redundancy in all the following layers.
We propose a novel token propagation controller (TPC) that incorporates two different token-distributions.
- Score: 6.341420717393898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision transformers (ViTs) have achieved promising results on a variety of
Computer Vision tasks, however their quadratic complexity in the number of
input tokens has limited their application specially in resource-constrained
settings. Previous approaches that employ gradual token reduction to address
this challenge assume that token redundancy in one layer implies redundancy in
all the following layers. We empirically demonstrate that this assumption is
often not correct, i.e., tokens that are redundant in one layer can be useful
in later layers. We employ this key insight to propose a novel token
propagation controller (TPC) that incorporates two different
token-distributions, i.e., pause probability and restart probability to control
the reduction and reuse of tokens respectively, which results in more efficient
token utilization. To improve the estimates of token distributions, we propose
a smoothing mechanism that acts as a regularizer and helps remove noisy
outliers. Furthermore, to improve the training-stability of our proposed TPC,
we introduce a model stabilizer that is able to implicitly encode local image
structures and minimize accuracy fluctuations during model training. We present
extensive experimental results on the ImageNet-1K dataset using DeiT, LV-ViT
and Swin models to demonstrate the effectiveness of our proposed method. For
example, compared to baseline models, our proposed method improves the
inference speed of the DeiT-S by 250% while increasing the classification
accuracy by 1.0%.
Related papers
- Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning [63.43972993473501]
Token compression expedites the training and inference of Vision Transformers (ViTs)
However, when applied to downstream tasks, compression degrees are mismatched between training and inference stages.
We propose a model arithmetic framework to decouple the compression degrees between the two stages.
arXiv Detail & Related papers (2024-08-13T10:36:43Z) - ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers [7.155242379236052]
Quantization of Vision Transformers (ViTs) has emerged as a promising solution to mitigate these challenges.
Existing methods still suffer from significant accuracy loss at low-bit.
ADFQ-ViT provides significant improvements over various baselines in image classification, object detection, and instance segmentation tasks at 4-bit.
arXiv Detail & Related papers (2024-07-03T02:41:59Z) - GTP-ViT: Efficient Vision Transformers via Graph-based Token Propagation [30.343504537684755]
Vision Transformers (ViTs) have revolutionized the field of computer vision, yet their deployments on resource-constrained devices remain challenging.
To expedite ViTs, token pruning and token merging approaches have been developed, which aim at reducing the number of tokens involved in computation.
We introduce a novel Graph-based Token Propagation (GTP) method to resolve the challenge of balancing model efficiency and information preservation for efficient ViTs.
arXiv Detail & Related papers (2023-11-06T11:14:19Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
We propose a new self-supervised pre-training approach, named Masked and Permuted Vision Transformer (MaPeT)
MaPeT employs autoregressive and permuted predictions to capture intra-patch dependencies.
Our results demonstrate that MaPeT achieves competitive performance on ImageNet.
arXiv Detail & Related papers (2023-06-12T18:12:19Z) - CageViT: Convolutional Activation Guided Efficient Vision Transformer [90.69578999760206]
This paper presents an efficient vision Transformer, called CageViT, that is guided by convolutional activation to reduce computation.
Our CageViT, unlike current Transformers, utilizes a new encoder to handle the rearranged tokens.
Experimental results demonstrate that the proposed CageViT outperforms the most recent state-of-the-art backbones by a large margin in terms of efficiency.
arXiv Detail & Related papers (2023-05-17T03:19:18Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
We propose an adaptive sparse token pruning framework with a minimal cost.
Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy.
arXiv Detail & Related papers (2022-09-28T03:07:32Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - AdaViT: Adaptive Tokens for Efficient Vision Transformer [91.88404546243113]
We introduce AdaViT, a method that adaptively adjusts the inference cost of vision transformer (ViT) for images of different complexity.
AdaViT achieves this by automatically reducing the number of tokens in vision transformers that are processed in the network as inference proceeds.
arXiv Detail & Related papers (2021-12-14T18:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.