Silent Hazards of Token Reduction in Vision-Language Models: The Hidden Impact on Consistency
- URL: http://arxiv.org/abs/2503.06794v2
- Date: Tue, 11 Mar 2025 14:34:14 GMT
- Title: Silent Hazards of Token Reduction in Vision-Language Models: The Hidden Impact on Consistency
- Authors: Yizheng Sun, Hao Li, Chang Xu, Chenghua Lin, Riza Batista-Navarro, Jingyuan Sun,
- Abstract summary: Vision language models (VLMs) have excelled in visual reasoning but often incur high computational costs.<n>Recent token reduction methods claim to achieve minimal performance loss.<n>We propose LoFi--a training-free visual token reduction method.
- Score: 30.354755381533433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision language models (VLMs) have excelled in visual reasoning but often incur high computational costs. One key reason is the redundancy of visual tokens. Although recent token reduction methods claim to achieve minimal performance loss, our extensive experiments reveal that token reduction can substantially alter a model's output distribution, leading to changes in prediction patterns that standard metrics such as accuracy loss do not fully capture. Such inconsistencies are especially concerning for practical applications where system stability is critical. To investigate this phenomenon, we analyze how token reduction influences the energy distribution of a VLM's internal representations using a lower-rank approximation via Singular Value Decomposition (SVD). Our results show that changes in the Inverse Participation Ratio of the singular value spectrum are strongly correlated with the model's consistency after token reduction. Based on these insights, we propose LoFi--a training-free visual token reduction method that utilizes the leverage score from SVD for token pruning. Experimental evaluations demonstrate that LoFi not only reduces computational costs with minimal performance degradation but also significantly outperforms state-of-the-art methods in terms of output consistency.
Related papers
- Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
We present the first theoretical error decomposition analysis of methods such as perplexity and self-consistency.<n>Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function.<n>We propose Reasoning-Pruning Perplexity Consistency (RPC), which integrates perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths.
arXiv Detail & Related papers (2025-02-01T18:09:49Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
Reflectance-Aware Trajectory Refinement (RATR) is a simple yet effective module to refine the teacher trajectory using the reflectance component of images.
textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT) is an efficient and flexible distillation framework tailored for Low-Light Image Enhancement (LLIE)
arXiv Detail & Related papers (2024-10-16T08:07:18Z) - Exploring Token Pruning in Vision State Space Models [38.122017567843905]
State Space Models (SSMs) have the advantage of keeping linear computational complexity compared to attention modules in transformers.
We take the novel step of enhancing the efficiency of SSM-based vision models through token-based pruning.
We achieve 81.7% accuracy on ImageNet with a 41.6% reduction in the FLOPs for pruned PlainMamba-L3.
arXiv Detail & Related papers (2024-09-27T17:59:50Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - TPC-ViT: Token Propagation Controller for Efficient Vision Transformer [6.341420717393898]
Vision transformers (ViTs) have achieved promising results on a variety of Computer Vision tasks.
Previous approaches that employ gradual token reduction to address this challenge assume that token redundancy in one layer implies redundancy in all the following layers.
We propose a novel token propagation controller (TPC) that incorporates two different token-distributions.
arXiv Detail & Related papers (2024-01-03T00:10:33Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
Visual Prompting has emerged as a pivotal method for transfer learning in computer vision.
Model compression detrimentally impacts the performance of visual prompting-based transfer.
However, negative effects on calibration are not present when models are compressed via quantization.
arXiv Detail & Related papers (2023-08-29T01:47:49Z) - Multi-Scale And Token Mergence: Make Your ViT More Efficient [3.087140219508349]
Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain.
We propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens.
Our method achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
arXiv Detail & Related papers (2023-06-08T02:58:15Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z) - Calibrating Segmentation Networks with Margin-based Label Smoothing [19.669173092632]
We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses.
These losses could be viewed as approximations of a linear penalty imposing equality constraints on logit distances.
We propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
arXiv Detail & Related papers (2022-09-09T20:21:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.