Retraining-free Model Quantization via One-Shot Weight-Coupling Learning
- URL: http://arxiv.org/abs/2401.01543v2
- Date: Fri, 14 Jun 2024 14:55:26 GMT
- Title: Retraining-free Model Quantization via One-Shot Weight-Coupling Learning
- Authors: Chen Tang, Yuan Meng, Jiacheng Jiang, Shuzhao Xie, Rongwei Lu, Xinzhu Ma, Zhi Wang, Wenwu Zhu,
- Abstract summary: Mixed-precision quantization (MPQ) is advocated to compress the model effectively by allocating heterogeneous bit-width for layers.
MPQ is typically organized into a searching-retraining two-stage process.
In this paper, we devise a one-shot training-searching paradigm for mixed-precision model compression.
- Score: 41.299675080384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantization is of significance for compressing the over-parameterized deep neural models and deploying them on resource-limited devices. Fixed-precision quantization suffers from performance drop due to the limited numerical representation ability. Conversely, mixed-precision quantization (MPQ) is advocated to compress the model effectively by allocating heterogeneous bit-width for layers. MPQ is typically organized into a searching-retraining two-stage process. In this paper, we devise a one-shot training-searching paradigm for mixed-precision model compression. Specifically, in the first stage, all potential bit-width configurations are coupled and thus optimized simultaneously within a set of shared weights. However, our observations reveal a previously unseen and severe bit-width interference phenomenon among highly coupled weights during optimization, leading to considerable performance degradation under a high compression ratio. To tackle this problem, we first design a bit-width scheduler to dynamically freeze the most turbulent bit-width of layers during training, to ensure the rest bit-widths converged properly. Then, taking inspiration from information theory, we present an information distortion mitigation technique to align the behavior of the bad-performing bit-widths to the well-performing ones. In the second stage, an inference-only greedy search scheme is devised to evaluate the goodness of configurations without introducing any additional training costs. Extensive experiments on three representative models and three datasets demonstrate the effectiveness of the proposed method. Code can be available on \href{https://www.github.com/1hunters/retraining-free-quantization}{https://github.com/1hunters/retraining-free-quantization}.
Related papers
- Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization.
VBMF is employed to estimate the rank of the weight tensor at each layer.
Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
arXiv Detail & Related papers (2024-08-29T06:40:34Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
We propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight.
We develop an improved KL metric to determine optimal quantization scales for activation.
For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss.
arXiv Detail & Related papers (2023-12-17T02:31:20Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Optimal Brain Compression: A Framework for Accurate Post-Training
Quantization and Pruning [29.284147465251685]
We introduce a new compression framework which covers both weight pruning and quantization in a unified setting.
We show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods.
arXiv Detail & Related papers (2022-08-24T14:33:35Z) - OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization [32.60139548889592]
We propose a novel One-shot Pruning-Quantization (OPQ) in this paper.
OPQ analytically solves the compression allocation with pre-trained weight parameters only.
We propose a unified channel-wise quantization method that enforces all channels of each layer to share a common codebook.
arXiv Detail & Related papers (2022-05-23T09:05:25Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
latent variables with priors and hyperpriors is an essential problem in variational image compression.
We find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective.
Our model has better rate-distortion performance and an impressive $3.18times$ compression speed up.
arXiv Detail & Related papers (2022-03-21T11:44:17Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
We tackle the problem of producing compact models, maximizing their accuracy for a given model size.
A standard solution is to train networks with Quantization Aware Training, where the weights are quantized during training and the gradients approximated with the Straight-Through Estimator.
In this paper, we extend this approach to work beyond int8 fixed-point quantization with extreme compression methods.
arXiv Detail & Related papers (2020-04-15T20:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.