Few-shot Image Generation via Information Transfer from the Built
Geodesic Surface
- URL: http://arxiv.org/abs/2401.01749v2
- Date: Sun, 3 Mar 2024 03:00:33 GMT
- Title: Few-shot Image Generation via Information Transfer from the Built
Geodesic Surface
- Authors: Yuexing Han and Liheng Ruan and Bing Wang
- Abstract summary: We propose a method called Information Transfer from the Built Geodesic Surface (ITBGS)
With the FAGS module, a pseudo-source domain is created by projecting image features from the training dataset into the Pre-Shape Space.
We demonstrate that the proposed method consistently achieves optimal or comparable results across a diverse range of semantically distinct datasets.
- Score: 2.617962830559083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Images generated by most of generative models trained with limited data often
exhibit deficiencies in either fidelity, diversity, or both. One effective
solution to address the limitation is few-shot generative model adaption.
However, the type of approaches typically rely on a large-scale pre-trained
model, serving as a source domain, to facilitate information transfer to the
target domain. In this paper, we propose a method called Information Transfer
from the Built Geodesic Surface (ITBGS), which contains two module: Feature
Augmentation on Geodesic Surface (FAGS); Interpolation and Regularization
(I\&R). With the FAGS module, a pseudo-source domain is created by projecting
image features from the training dataset into the Pre-Shape Space, subsequently
generating new features on the Geodesic surface. Thus, no pre-trained models is
needed for the adaption process during the training of generative models with
FAGS. I\&R module are introduced for supervising the interpolated images and
regularizing their relative distances, respectively, to further enhance the
quality of generated images. Through qualitative and quantitative experiments,
we demonstrate that the proposed method consistently achieves optimal or
comparable results across a diverse range of semantically distinct datasets,
even in extremely few-shot scenarios.
Related papers
- Regularized Training with Generated Datasets for Name-Only Transfer of Vision-Language Models [36.59260354292177]
Recent advancements in text-to-image generation have inspired researchers to generate datasets tailored for perception models using generative models.
We aim to fine-tune vision-language models to a specific classification model without access to any real images.
Despite the high fidelity of generated images, we observed a significant performance degradation when fine-tuning the model using the generated datasets.
arXiv Detail & Related papers (2024-06-08T10:43:49Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain.
With only a single representative text feature instead of real images, the synthesized images gradually lose diversity.
We propose a novel method to find semantic variations of the target text in the CLIP space.
arXiv Detail & Related papers (2023-08-21T08:12:28Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
We propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance.
SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works.
We also propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms.
arXiv Detail & Related papers (2023-08-20T04:09:12Z) - DomainStudio: Fine-Tuning Diffusion Models for Domain-Driven Image
Generation using Limited Data [20.998032566820907]
This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data.
It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains.
arXiv Detail & Related papers (2023-06-25T07:40:39Z) - Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer [60.70102634957392]
Domain generalization (DG) has been a hot topic in image recognition, with a goal to train a general model that can perform well on unseen domains.
In this paper, we propose a novel domain generalization method for image recognition through cross-client style transfer (CCST) without exchanging data samples.
Our method outperforms recent SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale medical image dataset (Camelyon17) in the FL setting.
arXiv Detail & Related papers (2022-10-03T13:15:55Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - Conditional Generation of Synthetic Geospatial Images from Pixel-level
and Feature-level Inputs [0.0]
We present a conditional generative model, called VAE-Info-cGAN, for synthesizing semantically rich images simultaneously conditioned on a pixel-level condition (PLC) and a feature-level condition (FLC)
The proposed model can accurately generate various forms of macroscopic aggregates across different geographic locations while conditioned only on atemporal representation of the road network.
arXiv Detail & Related papers (2021-09-11T06:58:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.