GeoPos: A Minimal Positional Encoding for Enhanced Fine-Grained Details in Image Synthesis Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2401.01951v2
- Date: Thu, 05 Dec 2024 17:31:43 GMT
- Title: GeoPos: A Minimal Positional Encoding for Enhanced Fine-Grained Details in Image Synthesis Using Convolutional Neural Networks
- Authors: Mehran Hosseini, Peyman Hosseini,
- Abstract summary: The enduring inability of image generative models to recreate intricate geometric features has been an ongoing problem for nearly a decade.
In this paper, we demonstrate how this problem can be mitigated by augmenting convolution layers geometric capabilities.
We show this drastically improves quality of images generated by Diffusion Models, GANs, and Variational AutoEncoders (VAE)
- Score: 0.0
- License:
- Abstract: The enduring inability of image generative models to recreate intricate geometric features, such as those present in human hands and fingers has been an ongoing problem in image generation for nearly a decade. While strides have been made by increasing model sizes and diversifying training datasets, this issue remains prevalent across all models, from denoising diffusion models to Generative Adversarial Networks (GAN), pointing to a fundamental shortcoming in the underlying architectures. In this paper, we demonstrate how this problem can be mitigated by augmenting convolution layers geometric capabilities through providing them with a single input channel incorporating the relative n-dimensional Cartesian coordinate system. We show this drastically improves quality of images generated by Diffusion Models, GANs, and Variational AutoEncoders (VAE).
Related papers
- Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Learning multi-scale local conditional probability models of images [7.07848787073901]
Deep neural networks can learn powerful prior probability models for images, as evidenced by the high-quality generations obtained with recent score-based diffusion methods.
But the means by which these networks capture complex global statistical structure, apparently without suffering from the curse of dimensionality, remain a mystery.
We incorporate diffusion methods into a multi-scale decomposition, reducing dimensionality by assuming a stationary local Markov model for wavelet coefficients conditioned on coarser-scale coefficients.
arXiv Detail & Related papers (2023-03-06T09:23:14Z) - Insights from Generative Modeling for Neural Video Compression [31.59496634465347]
We present newly proposed neural video coding algorithms through the lens of deep autoregressive and latent variable modeling.
We propose several architectures that yield state-of-the-art video compression performance on high-resolution video.
We provide further evidence that the generative modeling viewpoint can advance the neural video coding field.
arXiv Detail & Related papers (2021-07-28T02:19:39Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - Improving Augmentation and Evaluation Schemes for Semantic Image
Synthesis [16.097324852253912]
We introduce a novel augmentation scheme designed specifically for generative adversarial networks (GANs)
We propose to randomly warp object shapes in the semantic label maps used as an input to the generator.
The local shape discrepancies between the warped and non-warped label maps and images enable the GAN to learn better the structural and geometric details of the scene.
arXiv Detail & Related papers (2020-11-25T10:55:26Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.