Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling
- URL: http://arxiv.org/abs/2103.08877v1
- Date: Tue, 16 Mar 2021 07:01:08 GMT
- Title: Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling
- Authors: {\DJ}or{\dj}e Miladinovi\'c, Aleksandar Stani\'c, Stefan Bauer,
J\"urgen Schmidhuber, Joachim M. Buhmann
- Abstract summary: We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
- Score: 79.15521784128102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to improve generative modeling by better exploiting spatial regularities
and coherence in images? We introduce a novel neural network for building image
generators (decoders) and apply it to variational autoencoders (VAEs). In our
spatial dependency networks (SDNs), feature maps at each level of a deep neural
net are computed in a spatially coherent way, using a sequential gating-based
mechanism that distributes contextual information across 2-D space. We show
that augmenting the decoder of a hierarchical VAE by spatial dependency layers
considerably improves density estimation over baseline convolutional
architectures and the state-of-the-art among the models within the same class.
Furthermore, we demonstrate that SDN can be applied to large images by
synthesizing samples of high quality and coherence. In a vanilla VAE setting,
we find that a powerful SDN decoder also improves learning disentangled
representations, indicating that neural architectures play an important role in
this task. Our results suggest favoring spatial dependency over convolutional
layers in various VAE settings. The accompanying source code is given at
https://github.com/djordjemila/sdn.
Related papers
- Lacunarity Pooling Layers for Plant Image Classification using Texture Analysis [0.38366697175402226]
Pooling layers overlook important information encoded in the spatial arrangement of pixel intensity and/or feature values.
We propose a novel lacunarity pooling layer that aims to capture the spatial heterogeneity of the feature maps by evaluating the variability within local windows.
The lacunarity pooling layer can be seamlessly integrated into any artificial neural network architecture.
arXiv Detail & Related papers (2024-04-25T00:34:52Z) - Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
arXiv Detail & Related papers (2024-02-24T03:44:06Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
We present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID)
Our NID assembles a group of coordinate-based Impworks which are tuned to span the desired function space.
Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data.
arXiv Detail & Related papers (2022-07-08T05:07:19Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
We propose a deep structure encoder using the recently introduced Volterra Neural Networks (VNNs)
We show that the proposed approach demonstrates a much-improved sample complexity over CNN-based auto-encoder with a superb robust classification performance.
arXiv Detail & Related papers (2021-04-10T18:29:01Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.