論文の概要: Revisiting Zero-Shot Abstractive Summarization in the Era of Large Language Models from the Perspective of Position Bias
- arxiv url: http://arxiv.org/abs/2401.01989v3
- Date: Mon, 18 Mar 2024 20:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:41:33.451235
- Title: Revisiting Zero-Shot Abstractive Summarization in the Era of Large Language Models from the Perspective of Position Bias
- Title(参考訳): 大言語モデルにおけるゼロショット抽象要約の再検討 : 位置バイアスの観点から
- Authors: Anshuman Chhabra, Hadi Askari, Prasant Mohapatra,
- Abstract要約: 位置バイアスを測定することにより,Large Language Models (LLMs) におけるゼロショット抽象要約を特徴付ける。
位置バイアスは入力テキストの特定の部分からの情報を不当に優先するモデルの傾向を捉え、望ましくない振る舞いをもたらす。
その結果,ゼロショット要約タスクにおけるモデルの性能と位置バイアスに関する新たな洞察と議論につながった。
- 参考スコア(独自算出の注目度): 13.828653029379257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We characterize and study zero-shot abstractive summarization in Large Language Models (LLMs) by measuring position bias, which we propose as a general formulation of the more restrictive lead bias phenomenon studied previously in the literature. Position bias captures the tendency of a model unfairly prioritizing information from certain parts of the input text over others, leading to undesirable behavior. Through numerous experiments on four diverse real-world datasets, we study position bias in multiple LLM models such as GPT 3.5-Turbo, Llama-2, and Dolly-v2, as well as state-of-the-art pretrained encoder-decoder abstractive summarization models such as Pegasus and BART. Our findings lead to novel insights and discussion on performance and position bias of models for zero-shot summarization tasks.
- Abstract(参考訳): 本研究では, 位置バイアスを測定することで, 大規模言語モデル(LLM)におけるゼロショット抽象的要約を特徴づけ, 研究し, 従来研究されていたより制限的な鉛バイアス現象の一般的な定式化として提案する。
位置バイアスは入力テキストの特定の部分からの情報を不当に優先するモデルの傾向を捉え、望ましくない振る舞いをもたらす。
GPT 3.5-Turbo, Llama-2, Dolly-v2 などの複数の LLM モデルにおける位置バイアスと,Pegasus や BART などの最先端のエンコーダデコーダ・デコーダ抽象要約モデルについて検討した。
その結果,ゼロショット要約タスクにおけるモデルの性能と位置バイアスに関する新たな洞察と議論につながった。
関連論文リスト
- From Lists to Emojis: How Format Bias Affects Model Alignment [67.08430328350327]
人的フィードバックからの強化学習における形式バイアスについて検討する。
人間の評価者を含む多くの広く使われている嗜好モデルは、特定のフォーマットパターンに対して強いバイアスを示す。
バイアスデータが少ないと、報酬モデルにかなりのバイアスを注入できることを示す。
論文 参考訳(メタデータ) (2024-09-18T05:13:18Z) - Subtle Biases Need Subtler Measures: Dual Metrics for Evaluating Representative and Affinity Bias in Large Language Models [10.73340009530019]
本研究は,Large Language Models (LLMs) における2つのバイアス,代表バイアスと親和性バイアスに対処する。
我々は,これらのバイアスを測定するために,代表バイアススコア(RBS)と親和性バイアススコア(ABS)の2つの新しい指標を導入する。
我々の分析では、白人、ストレート、男性と関連する身元を選好する著名なLSMにおいて、顕著な偏見が明らかとなった。
親和性バイアスによる各モデルにおける特徴的評価パターンの解明
論文 参考訳(メタデータ) (2024-05-23T13:35:34Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Bias in Opinion Summarisation from Pre-training to Adaptation: A Case
Study in Political Bias [4.964212137957899]
オピニオン要約は、製品レビュー、ディスカッションフォーラム、ソーシャルメディアのテキストなどの文書で提示される健全な情報と意見を要約することを目的としている。
偏見のある要約を作ることは 世論を揺さぶるリスクがあります
論文 参考訳(メタデータ) (2024-02-01T04:15:59Z) - Fair Abstractive Summarization of Diverse Perspectives [103.08300574459783]
公平な要約は、特定のグループを過小評価することなく、多様な視点を包括的にカバーしなければなりません。
はじめに、抽象的な要約における公正性は、いかなる集団の視点にも過小評価されないものとして、正式に定義する。
本研究では,対象視点と対象視点の差を測定することで,基準のない4つの自動計測手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T03:38:55Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
提案手法は, 誤要約の修正において, 従来手法よりもはるかに優れていることを示す。
我々のモデルであるFactEditは、CNN/DMで11点、XSumで31点以上のファクトリティスコアを改善する。
論文 参考訳(メタデータ) (2022-10-22T07:16:19Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
本稿では,事前学習した言語モデルを用いて,数ショットのテキスト分類を行う方法について検討する。
ラベル付きデータが少ない場合の教師付きコントラスト学習と、ラベルなしデータの一貫性と規則化を採用する。
論文 参考訳(メタデータ) (2022-09-29T19:26:23Z) - News Summarization and Evaluation in the Era of GPT-3 [73.48220043216087]
GPT-3は,大規模な要約データセット上で訓練された微調整モデルと比較する。
我々は,GPT-3サマリーが圧倒的に好まれるだけでなく,タスク記述のみを用いることで,現実性に乏しいようなデータセット固有の問題に悩まされることも示している。
論文 参考訳(メタデータ) (2022-09-26T01:04:52Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Subjective Bias in Abstractive Summarization [11.675414451656568]
主観的バイアスと同じ内容を要約する複数の表現の相違を定式化し、抽象的要約の文脈におけるこのバイアスの役割について検討する。
スタイルクラスタ化されたデータセットに基づいてトレーニングされた要約モデルの結果は、より収束性、抽象化、一般化につながるある種のスタイルが存在することを示している。
論文 参考訳(メタデータ) (2021-06-18T12:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。