論文の概要: Efficient Cloud-edge Collaborative Inference for Object
Re-identification
- arxiv url: http://arxiv.org/abs/2401.02041v1
- Date: Thu, 4 Jan 2024 02:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 15:54:03.883440
- Title: Efficient Cloud-edge Collaborative Inference for Object
Re-identification
- Title(参考訳): オブジェクト再識別のための効率的なクラウドエッジ協調推論
- Authors: Chuanming Wang, Yuxin Yang, Mengshi Qi, Huadong Ma
- Abstract要約: 我々は、ReIDシステムのためのクラウド-エッジ協調推論フレームワークを開拓した。
本稿では,クラウドサーバに所望の画像を返すために,分散対応相関モデルネットワーク(DaCM)を提案する。
DaCMは、タイムスタンプに暗黙的に含まれている空間的時間的相関関係をグラフ構造に埋め込んで、アップロードウィンドウのサイズを調整するためにクラウドに適用することができる。
- 参考スコア(独自算出の注目度): 27.952445808987036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current object re-identification (ReID) system follows the centralized
processing paradigm, i.e., all computations are conducted in the cloud server
and edge devices are only used to capture and send images. As the number of
videos experiences a rapid escalation, this paradigm has become impractical due
to the finite computational resources. In such a scenario, the ReID system
should be converted to fit in the cloud-edge collaborative processing paradigm,
which is crucial to boost the scalability and practicality of ReID systems.
However, current relevant work lacks research on this issue, making it
challenging for ReID methods to be adapted effectively. Therefore, we pioneer a
cloud-edge collaborative inference framework for ReID systems and particularly
propose a distribution-aware correlation modeling network (DaCM) to make the
desired image return to the cloud server as soon as possible via learning to
model the spatial-temporal correlations among instances. DaCM embeds the
spatial-temporal correlations implicitly included in the timestamps into a
graph structure, and it can be applied in the cloud to regulate the size of the
upload window and on the edge device to adjust the sequence of images,
respectively. Traditional ReID methods can be combined with DaCM seamlessly,
enabling their application within our proposed edge-cloud collaborative
framework. Extensive experiments demonstrate that our method obviously reduces
transmission overhead and significantly improves performance. We will release
our code and model.
- Abstract(参考訳): 現在のオブジェクト再識別(ReID)システムは、集中処理パラダイム、すなわち、すべての計算がクラウドサーバで行われ、エッジデバイスは画像のキャプチャと送信にのみ使用される。
ビデオの数が急速にエスカレーションされるにつれて、このパラダイムは有限の計算資源のために実用的ではない。
このようなシナリオでは、ReIDシステムのスケーラビリティと実用性を高めるために重要なクラウド-エッジ協調処理パラダイムに適合するようにReIDシステムを変換する必要がある。
しかし、現在の関連する研究はこの問題の研究を欠いているため、reidメソッドを効果的に適用することは困難である。
そこで我々は,ReIDシステムのためのクラウドエッジ協調推論フレームワークを考案し,特に,インスタンス間の空間的相関をモデル化する学習を通じて,所望の画像をクラウドサーバにできるだけ早く返却する分散対応相関モデルネットワーク(DaCM)を提案する。
dacmはタイムスタンプに暗黙的に含まれている空間的-時間的相関をグラフ構造に埋め込み、クラウドに適用してアップロードウィンドウのサイズを制御し、エッジデバイス上で画像のシーケンスを調整することができる。
従来のReIDメソッドをDaCMとシームレスに組み合わせることで、提案したエッジクラウド協調フレームワーク内でアプリケーションを実現することができます。
広範に実験した結果,提案手法は伝送のオーバーヘッドを低減し,性能を大幅に向上させることがわかった。
コードとモデルをリリースします。
関連論文リスト
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - CMR-Agent: Learning a Cross-Modal Agent for Iterative Image-to-Point Cloud Registration [2.400446821380503]
Image-to-point cloud registrationは、ポイントクラウドに対するRGBイメージの相対的なカメラポーズを決定することを目的としている。
学習に基づくほとんどの手法は、反復最適化のためのフィードバック機構を使わずに、特徴空間における2D-3D点対応を確立する。
本稿では,登録手順を反復マルコフ決定プロセスとして再構成し,カメラポーズの漸進的な調整を可能にすることを提案する。
論文 参考訳(メタデータ) (2024-08-05T11:40:59Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - RecNet: An Invertible Point Cloud Encoding through Range Image
Embeddings for Multi-Robot Map Sharing and Reconstruction [8.602553195689513]
RecNetは資源制約されたロボットの効果的な位置認識のための新しいアプローチである。
3Dポイントクラウドをレンジイメージに投影し、エンコーダデコーダフレームワークを使用して圧縮し、その後レンジイメージを再構築し、元のポイントクラウドを復元する。
提案手法は,公開データセットとフィールド実験の両方を用いて評価し,その有効性と実世界の応用の可能性を確認する。
論文 参考訳(メタデータ) (2024-02-03T15:43:50Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - GP-PCS: One-shot Feature-Preserving Point Cloud Simplification with Gaussian Processes on Riemannian Manifolds [2.8811433060309763]
本稿では,新しいワンショットポイントクラウド単純化手法を提案する。
表面の復元を一切行わずに、健全な構造的特徴と点雲全体の形状の両方を保っている。
提案手法を複数のベンチマークおよび自己取得点雲上で評価し,既存手法と比較し,下流での登録と表面再構成の応用を実証した。
論文 参考訳(メタデータ) (2023-03-27T14:05:34Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
コントラスト学習に基づいて構築された新しいコントラスト正規化(CR)を提案し、ヘイズ画像とクリア画像の情報の両方をネガティブかつポジティブなサンプルとして活用する。
CRは、復元された画像が透明な画像に近づき、表現空間のぼやけた画像から遠くへ押し出されることを保証する。
性能とメモリストレージのトレードオフを考慮すると、オートエンコーダのようなフレームワークに基づくコンパクトなデハージングネットワークを開発する。
論文 参考訳(メタデータ) (2021-04-19T14:56:21Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
画像中のすべての単語やオブジェクトに係わるクロスアテンション機構を備えたTransformerベースのアーキテクチャを頼りに、クロスモーダル検索プロセスのテキストとビジュアルインプットへの最先端のアプローチ。
事前学習したテキスト画像のマルチモーダルモデルを効率的な検索モデルに変換する新しい微調整フレームワークを提案する。
我々は,モノリンガル,マルチリンガル,ゼロショットにおける一連の標準クロスモーダル検索ベンチマーク実験を行い,最先端クロスエンコーダに対する精度向上と大幅な効率向上を実証した。
論文 参考訳(メタデータ) (2021-03-22T15:08:06Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
我々は、MEC対応カメラ監視システムにおいて、re-IDを用いた歩行者属性認識のための新しいモデルの設計を行う。
本稿では,属性認識と人物再IDを協調的に考慮し,分散モジュールの集合を持つ新しい推論フレームワークを提案する。
そこで我々は,提案した分散推論フレームワークのモジュール分布の学習に基づくアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-08-12T12:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。