Energy based diffusion generator for efficient sampling of Boltzmann distributions
- URL: http://arxiv.org/abs/2401.02080v2
- Date: Sat, 14 Sep 2024 06:47:02 GMT
- Title: Energy based diffusion generator for efficient sampling of Boltzmann distributions
- Authors: Yan Wang, Ling Guo, Hao Wu, Tao Zhou,
- Abstract summary: Energy-Based Diffusion Generator (EDG) is a novel approach that integrates ideas from variational autoencoders and diffusion models.
EDG is simulation-free, eliminating the need to solve ordinary or differential equations during training.
- Score: 11.855642710689704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling from Boltzmann distributions, particularly those tied to high-dimensional and complex energy functions, poses a significant challenge in many fields. In this work, we present the Energy-Based Diffusion Generator (EDG), a novel approach that integrates ideas from variational autoencoders and diffusion models. EDG leverages a decoder to transform latent variables from a simple distribution into samples approximating the target Boltzmann distribution, while the diffusion-based encoder provides an accurate estimate of the Kullback-Leibler divergence during training. Notably, EDG is simulation-free, eliminating the need to solve ordinary or stochastic differential equations during training. Furthermore, by removing constraints such as bijectivity in the decoder, EDG allows for flexible network design. Through empirical evaluation, we demonstrate the superior performance of EDG across a variety of complex distribution tasks, outperforming existing methods.
Related papers
- End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler [15.372235873766812]
Learnable mixture priors offer improved control over exploration, adaptability to target support, and increased to counteract mode collapse.
Our experimental results demonstrate significant performance improvements across a diverse range of real-world and synthetic benchmark problems.
arXiv Detail & Related papers (2025-03-01T14:58:14Z) - Measuring Heterogeneity in Machine Learning with Distributed Energy Distance [3.8318398579197335]
We introduce energy distance as a sensitive measure for quantifying distributional discrepancies.
We develop Taylor approximations that preserve key theoretical quantitative properties while reducing computational overhead.
We propose a novel application of energy distance to assign penalty weights for aligning predictions across heterogeneous nodes.
arXiv Detail & Related papers (2025-01-27T16:15:57Z) - Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
We introduce Bellman Diffusion, a novel DGM framework that maintains linearity in MDPs through gradient and scalar field modeling.
Our results show that Bellman Diffusion achieves accurate field estimations and is a capable image generator, converging 1.5x faster than the traditional histogram-based baseline in distributional RL tasks.
arXiv Detail & Related papers (2024-10-02T17:53:23Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Diffusive Gibbs Sampling [40.1197715949575]
We propose Diffusive Gibbs Sampling (DiGS) for effective sampling from distributions characterized by distant and disconnected modes.
DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution.
A novel Metropolis-within-Gibbs scheme is proposed to enhance mixing in the denoising sampling step.
arXiv Detail & Related papers (2024-02-05T13:47:41Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Generation of data on discontinuous manifolds via continuous stochastic
non-invertible networks [6.201770337181472]
We show how to generate discontinuous distributions using continuous networks.
We derive a link between the cost functions and the information-theoretic formulation.
We apply our approach to synthetic 2D distributions to demonstrate both reconstruction and generation of discontinuous distributions.
arXiv Detail & Related papers (2021-12-17T17:39:59Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Mode Penalty Generative Adversarial Network with adapted Auto-encoder [0.15229257192293197]
We propose a mode penalty GAN combined with pre-trained auto encoder for explicit representation of generated and real data samples in encoded space.
We demonstrate that applying the proposed method to GANs helps generator's optimization becoming more stable and having faster convergence through experimental evaluations.
arXiv Detail & Related papers (2020-11-16T03:39:53Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.