PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning
- URL: http://arxiv.org/abs/2401.02094v2
- Date: Mon, 15 Jul 2024 10:59:38 GMT
- Title: PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning
- Authors: Haiyang Guo, Fei Zhu, Wenzhuo Liu, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract summary: Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly.
Our method exhibits strong robustness and superiority in different settings and degrees of data heterogeneity.
- Score: 41.984652077669104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing federated learning methods have effectively dealt with decentralized learning in scenarios involving data privacy and non-IID data. However, in real-world situations, each client dynamically learns new classes, requiring the global model to classify all seen classes. To effectively mitigate catastrophic forgetting and data heterogeneity under low communication costs, we propose a simple and effective method named PILoRA. On the one hand, we adopt prototype learning to learn better feature representations and leverage the heuristic information between prototypes and class features to design a prototype re-weight module to solve the classifier bias caused by data heterogeneity without retraining the classifier. On the other hand, we view incremental learning as the process of learning distinct task vectors and encoding them within different LoRA parameters. Accordingly, we propose Incremental LoRA to mitigate catastrophic forgetting. Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly. More importantly, our method exhibits strong robustness and superiority in different settings and degrees of data heterogeneity. The code is available at \url{https://github.com/Ghy0501/PILoRA}.
Related papers
- Distributionally robust self-supervised learning for tabular data [2.942619386779508]
Learning robust representation in presence of error slices is challenging, due to high cardinality features and the complexity of constructing error sets.
Traditional robust representation learning methods are largely focused on improving worst group performance in supervised setting in computer vision.
Our approach utilizes an encoder-decoder model trained with Masked Language Modeling (MLM) loss to learn robust latent representations.
arXiv Detail & Related papers (2024-10-11T04:23:56Z) - FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
Continual learning aims to empower models to learn new tasks without forgetting previously acquired knowledge.
We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks.
Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals.
arXiv Detail & Related papers (2024-03-24T12:41:58Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.