FairGridSearch: A Framework to Compare Fairness-Enhancing Models
- URL: http://arxiv.org/abs/2401.02183v1
- Date: Thu, 4 Jan 2024 10:29:02 GMT
- Title: FairGridSearch: A Framework to Compare Fairness-Enhancing Models
- Authors: Shih-Chi Ma, Tatiana Ermakova, Benjamin Fabian
- Abstract summary: This paper focuses on binary classification and proposes FairGridSearch, a novel framework for comparing fairness-enhancing models.
The study applies FairGridSearch to three popular datasets (Adult, COMPAS, and German Credit) and analyzes the impacts of metric selection, base estimator choice, and classification threshold on model fairness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are increasingly used in critical decision-making
applications. However, these models are susceptible to replicating or even
amplifying bias present in real-world data. While there are various bias
mitigation methods and base estimators in the literature, selecting the optimal
model for a specific application remains challenging.
This paper focuses on binary classification and proposes FairGridSearch, a
novel framework for comparing fairness-enhancing models. FairGridSearch enables
experimentation with different model parameter combinations and recommends the
best one. The study applies FairGridSearch to three popular datasets (Adult,
COMPAS, and German Credit) and analyzes the impacts of metric selection, base
estimator choice, and classification threshold on model fairness.
The results highlight the significance of selecting appropriate accuracy and
fairness metrics for model evaluation. Additionally, different base estimators
and classification threshold values affect the effectiveness of bias mitigation
methods and fairness stability respectively, but the effects are not consistent
across all datasets. Based on these findings, future research on fairness in
machine learning should consider a broader range of factors when building fair
models, going beyond bias mitigation methods alone.
Related papers
- Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - Deep Neural Network Benchmarks for Selective Classification [27.098996474946446]
Multiple selective classification frameworks exist, most of which rely on deep neural network architectures.
We evaluate these approaches using several criteria, including selective error rate, empirical coverage, distribution of rejected instance's classes, and performance on out-of-distribution instances.
arXiv Detail & Related papers (2024-01-23T12:15:47Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - fairml: A Statistician's Take on Fair Machine Learning Modelling [0.0]
We describe the fairml package which implements our previous work (Scutari, Panero, and Proissl 2022) and related models in the literature.
fairml is designed around classical statistical models and penalised regression results.
The constraint used to enforce fairness is to model estimation, making it possible to mix-and-match the desired model family and fairness definition for each application.
arXiv Detail & Related papers (2023-05-03T09:59:53Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.