論文の概要: Detection and Discovery of Misinformation Sources using Attributed Webgraphs
- arxiv url: http://arxiv.org/abs/2401.02379v3
- Date: Tue, 26 Mar 2024 20:27:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 22:13:36.026522
- Title: Detection and Discovery of Misinformation Sources using Attributed Webgraphs
- Title(参考訳): 分散Webグラフを用いた誤情報源の検出と発見
- Authors: Peter Carragher, Evan M. Williams, Kathleen M. Carley,
- Abstract要約: 本稿では、ラベル付きニュースドメインと、アウトリンクおよびバックリンクドメインへの接続を含む、新しい属性付きWebグラフデータセットを提案する。
本稿では,これらの属性付きWebグラフを用いたニュースサイトの信頼性検出におけるグラフニューラルネットワークの成功例を示す。
また、未知の誤報ニュースソースを発見するための新しいグラフベースのアルゴリズムを導入・評価する。
- 参考スコア(独自算出の注目度): 3.659498819753633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Website reliability labels underpin almost all research in misinformation detection. However, misinformation sources often exhibit transient behavior, which makes many such labeled lists obsolete over time. We demonstrate that Search Engine Optimization (SEO) attributes provide strong signals for predicting news site reliability. We introduce a novel attributed webgraph dataset with labeled news domains and their connections to outlinking and backlinking domains. We demonstrate the success of graph neural networks in detecting news site reliability using these attributed webgraphs, and show that our baseline news site reliability classifier outperforms current SoTA methods on the PoliticalNews dataset, achieving an F1 score of 0.96. Finally, we introduce and evaluate a novel graph-based algorithm for discovering previously unknown misinformation news sources.
- Abstract(参考訳): ウェブサイト信頼性ラベルは、誤情報検出のほとんどすべての研究を支えている。
しかし、誤報ソースは過渡的な行動を示すことが多く、多くのラベル付きリストが時代とともに時代遅れになっている。
本稿では,検索エンジン最適化(SEO)属性がニュースサイトの信頼性を予測する強力な信号を提供することを示す。
本稿では、ラベル付きニュースドメインと、アウトリンクおよびバックリンクドメインへの接続を含む、新しい属性付きWebグラフデータセットを提案する。
これらの属性付きWebグラフを用いてニュースサイト信頼性を検出するグラフニューラルネットワークの成功を実証し、ベースラインニュースサイト信頼性分類器が政治ニューズデータセット上で現在のSoTA手法より優れており、F1スコアが0.96であることを示す。
最後に,未知の誤報ニュースソースを発見するための新しいグラフベースアルゴリズムを提案し,評価する。
関連論文リスト
- FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFakeは、フェイクニュース検出のためのマルチドメイン知識強化ベンチマークである。
FineFakeは6つのセマンティックトピックと8つのプラットフォームにまたがる16,909のデータサンプルを含んでいる。
FineFakeプロジェクト全体がオープンソースリポジトリとして公開されている。
論文 参考訳(メタデータ) (2024-03-30T14:39:09Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - FNDaaS: Content-agnostic Detection of Fake News sites [3.936965297430477]
FNDは、コンテンツに依存しない最初のフェイクニュース検出手法である。
ニュースサイトごとのネットワークや構造的特徴など、新しい、未調査の機能について検討している。
過去のサイトでは最大0.967のAUCスコアを達成でき、新しくフラッグされたサイトでは最大77-92%の精度を達成できる。
論文 参考訳(メタデータ) (2022-12-13T11:17:32Z) - Fake News Quick Detection on Dynamic Heterogeneous Information Networks [3.599616699656401]
偽ニュース検出のための新しい動的不均一グラフニューラルネットワーク(DHGNN)を提案する。
我々はまず、ニュース記事の内容と著者プロファイルのセマンティック表現を得るために、BERTと微調整BERTを実装した。
そして、文脈情報と関係を反映した異質なニュース著者グラフを構築する。
論文 参考訳(メタデータ) (2022-05-14T11:23:25Z) - Deep Graph Learning for Anomalous Citation Detection [55.81334139806342]
本稿では,新たな深層グラフ学習モデルであるGLAD(Graph Learning for Anomaly Detection)を提案する。
GLADフレームワーク内ではCPU(Citation PUrpose)と呼ばれるアルゴリズムが提案され,引用テキストに基づく引用の目的が明らかになった。
論文 参考訳(メタデータ) (2022-02-23T09:05:28Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Hidden Biases in Unreliable News Detection Datasets [60.71991809782698]
データ収集中の選択バイアスがデータセットの望ましくないアーティファクトにつながることを示す。
クリーンスプリットでテストされたすべてのモデルに対して,列車/テストソースの重なりが無く,精度が大幅に低下した(>10%)。
将来的なデータセット生成には、困難/バイアスプローブとしての単純なモデルと、クリーンな非重複サイトと日付分割を使用する将来のモデル開発が含まれることを提案する。
論文 参考訳(メタデータ) (2021-04-20T17:16:41Z) - A Heuristic-driven Uncertainty based Ensemble Framework for Fake News
Detection in Tweets and News Articles [5.979726271522835]
ニュース項目が「本物」か「偽」かを自動的に識別する新しい偽ニュース検出システムについて述べる。
我々は,事前学習したモデルと統計的特徴融合ネットワークからなるアンサンブルモデルを用いた。
提案手法は,分類タスクの適切なクラス出力信頼度レベルとともに,信頼性の高い予測不確実性を定量化した。
論文 参考訳(メタデータ) (2021-04-05T06:35:30Z) - Adversarial Active Learning based Heterogeneous Graph Neural Network for
Fake News Detection [18.847254074201953]
新規な偽ニュース検出フレームワークであるAdversarial Active Learning-based Heterogeneous Graph Neural Network(AA-HGNN)を提案する。
AA-HGNNは、特にラベル付きデータのあいまいさに直面している場合、学習性能を高めるためにアクティブな学習フレームワークを利用する。
2つの実世界のフェイクニュースデータセットによる実験により、我々のモデルはテキストベースのモデルや他のグラフベースのモデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-01-27T05:05:25Z) - SGG: Spinbot, Grammarly and GloVe based Fake News Detection [6.193231258199234]
オンラインニュースポータルは必然的に、偽情報をWebに広める原因になっている。
このような不正行為は、堅牢な自動偽ニュース検知システムを要求する。
本稿では, パラフレーズ, 文法チェック, 単語埋め込みのツールを活用した, 頑健で単純な偽ニュース検出システムを提案する。
論文 参考訳(メタデータ) (2020-08-16T08:06:52Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。