3D Open-Vocabulary Panoptic Segmentation with 2D-3D Vision-Language Distillation
- URL: http://arxiv.org/abs/2401.02402v3
- Date: Wed, 3 Apr 2024 03:45:38 GMT
- Title: 3D Open-Vocabulary Panoptic Segmentation with 2D-3D Vision-Language Distillation
- Authors: Zihao Xiao, Longlong Jing, Shangxuan Wu, Alex Zihao Zhu, Jingwei Ji, Chiyu Max Jiang, Wei-Chih Hung, Thomas Funkhouser, Weicheng Kuo, Anelia Angelova, Yin Zhou, Shiwei Sheng,
- Abstract summary: We propose the first method to tackle 3D open-vocabulary panoptic segmentation.
Our model takes advantage of the fusion between learnable LiDAR features and dense frozen vision CLIP features.
We propose two novel loss functions: object-level distillation loss and voxel-level distillation loss.
- Score: 40.49322398635262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D panoptic segmentation is a challenging perception task, especially in autonomous driving. It aims to predict both semantic and instance annotations for 3D points in a scene. Although prior 3D panoptic segmentation approaches have achieved great performance on closed-set benchmarks, generalizing these approaches to unseen things and unseen stuff categories remains an open problem. For unseen object categories, 2D open-vocabulary segmentation has achieved promising results that solely rely on frozen CLIP backbones and ensembling multiple classification outputs. However, we find that simply extending these 2D models to 3D does not guarantee good performance due to poor per-mask classification quality, especially for novel stuff categories. In this paper, we propose the first method to tackle 3D open-vocabulary panoptic segmentation. Our model takes advantage of the fusion between learnable LiDAR features and dense frozen vision CLIP features, using a single classification head to make predictions for both base and novel classes. To further improve the classification performance on novel classes and leverage the CLIP model, we propose two novel loss functions: object-level distillation loss and voxel-level distillation loss. Our experiments on the nuScenes and SemanticKITTI datasets show that our method outperforms the strong baseline by a large margin.
Related papers
- CUS3D :CLIP-based Unsupervised 3D Segmentation via Object-level Denoise [9.12768731317489]
We propose a novel distillation learning framework named CUS3D.
An object-level denosing projection module is designed to screen out the noise'' and ensure more accurate 3D feature.
Based on the obtained features, a multimodal distillation learning module is designed to align the 3D feature with CLIP semantic feature space.
arXiv Detail & Related papers (2024-09-21T02:17:35Z) - Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques.
We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels.
This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset.
arXiv Detail & Related papers (2024-07-23T00:04:10Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
We propose a novel 3D brain segmentation approach using complementary 2D diffusion models.
Our goal is to achieve reliable segmentation quality without requiring complete labels for each individual subject.
arXiv Detail & Related papers (2024-07-17T06:14:53Z) - Segment Any 3D Object with Language [58.471327490684295]
We introduce Segment any 3D Object with LanguagE (SOLE), a semantic geometric and-aware visual-language learning framework with strong generalizability.
Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder.
Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks.
arXiv Detail & Related papers (2024-04-02T17:59:10Z) - Transferring CLIP's Knowledge into Zero-Shot Point Cloud Semantic
Segmentation [17.914290294935427]
Traditional 3D segmentation methods can only recognize a fixed range of classes that appear in the training set.
Large-scale visual-language pre-trained models, such as CLIP, have shown their generalization ability in the zero-shot 2D vision tasks.
We propose a simple yet effective baseline to transfer the visual-linguistic knowledge implied in CLIP to point cloud encoder.
arXiv Detail & Related papers (2023-12-12T12:35:59Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Weakly Supervised 3D Open-vocabulary Segmentation [104.07740741126119]
We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner.
We distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF)
A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process.
arXiv Detail & Related papers (2023-05-23T14:16:49Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
Generalizable 3D part segmentation is important but challenging in vision and robotics.
This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP.
We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm.
arXiv Detail & Related papers (2022-12-03T06:59:01Z) - Fine-Grained 3D Shape Classification with Hierarchical Part-View
Attentions [70.0171362989609]
We propose a novel fine-grained 3D shape classification method named FG3D-Net to capture the fine-grained local details of 3D shapes from multiple rendered views.
Our results under the fine-grained 3D shape dataset show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-05-26T06:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.