Correctness Comparison of ChatGPT-4, Gemini, Claude-3, and Copilot for Spatial Tasks
- URL: http://arxiv.org/abs/2401.02404v4
- Date: Tue, 13 Aug 2024 15:02:18 GMT
- Title: Correctness Comparison of ChatGPT-4, Gemini, Claude-3, and Copilot for Spatial Tasks
- Authors: Hartwig H. Hochmair, Levente Juhasz, Takoda Kemp,
- Abstract summary: This study conducts a zero-shot correctness evaluation for a set of 76 spatial tasks across seven task categories assigned to four prominent chatbots.
The chatbots performed well on tasks related to spatial literacy, GIS theory, and interpretation of programming code and functions, but revealed weaknesses in mapping, code writing, and spatial reasoning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative AI including large language models (LLMs) has recently gained significant interest in the geo-science community through its versatile task-solving capabilities including programming, arithmetic reasoning, generation of sample data, time-series forecasting, toponym recognition, or image classification. Most existing performance assessments of LLMs for spatial tasks have primarily focused on ChatGPT, whereas other chatbots received less attention. To narrow this research gap, this study conducts a zero-shot correctness evaluation for a set of 76 spatial tasks across seven task categories assigned to four prominent chatbots, i.e., ChatGPT-4, Gemini, Claude-3, and Copilot. The chatbots generally performed well on tasks related to spatial literacy, GIS theory, and interpretation of programming code and functions, but revealed weaknesses in mapping, code writing, and spatial reasoning. Furthermore, there was a significant difference in correctness of results between the four chatbots. Responses from repeated tasks assigned to each chatbot showed a high level of consistency in responses with matching rates of over 80% for most task categories in the four chatbots.
Related papers
- Evaluating Large Language Models on Spatial Tasks: A Multi-Task Benchmarking Study [4.80612909282198]
This study introduces a novel multi-task spatial evaluation dataset.
The dataset encompasses twelve distinct task types, including spatial understanding and path planning.
The study highlights the impact of prompt strategies on model performance in specific tasks.
arXiv Detail & Related papers (2024-08-26T17:25:16Z) - Unmasking the giant: A comprehensive evaluation of ChatGPT's proficiency in coding algorithms and data structures [0.6990493129893112]
We evaluate ChatGPT's ability to generate correct solutions to the problems fed to it, its code quality, and nature of run-time errors thrown by its code.
We look into patterns in the test cases passed in order to gain some insights into how wrong ChatGPT code is in these kinds of situations.
arXiv Detail & Related papers (2023-07-10T08:20:34Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks [0.0]
We show that ChatGPT outperforms crowd-workers for several annotation tasks.
The per-annotation cost of ChatGPT is less than $0.003 -- about twenty times cheaper than MTurk.
arXiv Detail & Related papers (2023-03-27T09:59:48Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT)
We examined ChatGPT's capabilities on 25 diverse analytical NLP tasks.
We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses.
arXiv Detail & Related papers (2023-02-21T15:20:37Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks.
We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset.
ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning.
arXiv Detail & Related papers (2023-02-08T12:35:34Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
ChatGPT, developed by OpenAI, has been trained using massive amounts of data and simulates human conversation.
It has garnered significant attention due to its ability to effectively answer a broad range of human inquiries.
However, a comprehensive analysis of ChatGPT's failures is lacking, which is the focus of this study.
arXiv Detail & Related papers (2023-02-06T04:21:59Z) - A Simple Language Model for Task-Oriented Dialogue [61.84084939472287]
SimpleTOD is a simple approach to task-oriented dialogue that uses a single, causal language model trained on all sub-tasks recast as a single sequence prediction problem.
This allows SimpleTOD to fully leverage transfer learning from pre-trained, open domain, causal language models such as GPT-2.
arXiv Detail & Related papers (2020-05-02T11:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.