UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT
Networks by Transformer
- URL: http://arxiv.org/abs/2401.02425v1
- Date: Wed, 8 Nov 2023 17:13:19 GMT
- Title: UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT
Networks by Transformer
- Authors: Botao Zhu, Ebrahim Bedeer, Ha H. Nguyen, Robert Barton, Zhen Gao
- Abstract summary: Maintaining freshness of data collection in Internet-of-Things (IoT) networks has attracted increasing attention.
We investigate the trajectory planning problem of an unmanned aerial vehicle (UAV) that is used to aid a cluster-based IoT network.
An optimization problem is formulated to minimize the total AoI of the collected data by the UAV from the ground IoT network.
- Score: 8.203870302926614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Maintaining freshness of data collection in Internet-of-Things (IoT) networks
has attracted increasing attention. By taking into account age-of-information
(AoI), we investigate the trajectory planning problem of an unmanned aerial
vehicle (UAV) that is used to aid a cluster-based IoT network. An optimization
problem is formulated to minimize the total AoI of the collected data by the
UAV from the ground IoT network. Since the total AoI of the IoT network depends
on the flight time of the UAV and the data collection time at hovering points,
we jointly optimize the selection of hovering points and the visiting order to
these points. We exploit the state-of-the-art transformer and the weighted A*,
which is a path search algorithm, to design a machine learning algorithm to
solve the formulated problem. The whole UAV-IoT system is fed into the encoder
network of the proposed algorithm, and the algorithm's decoder network outputs
the visiting order to ground clusters. Then, the weighted A* is used to find
the hovering point for each cluster in the ground IoT network. Simulation
results show that the trained model by the proposed algorithm has a good
generalization ability to generate solutions for IoT networks with different
numbers of ground clusters, without the need to retrain the model. Furthermore,
results show that our proposed algorithm can find better UAV trajectories with
the minimum total AoI when compared to other algorithms.
Related papers
- Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - A Learning-Based Trajectory Planning of Multiple UAVs for AoI
Minimization in IoT Networks [13.2742178284328]
textitAge of Information (AoI) is a metric that quantifies information timeliness, i.e., the freshness of the received information or status update.
We formulate an optimization problem to jointly plan the UAVs' trajectory, while minimizing the AoI of the received messages.
The complex optimization problem is efficiently solved using a deep reinforcement learning (DRL) algorithm.
arXiv Detail & Related papers (2022-09-13T12:39:23Z) - Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model [4.273341750394231]
We formulate the problem of jointly designing the UAV's trajectory and selecting cluster heads in the Internet-of-Things network.
We propose a novel deep reinforcement learning (DRL) with a sequential model strategy that can effectively learn the policy represented by a sequence-to-sequence neural network.
Through extensive simulations, the obtained results show that the proposed DRL method can find the UAV's trajectory that requires much less energy consumption.
arXiv Detail & Related papers (2021-12-01T07:59:53Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - UAV Trajectory Planning in Wireless Sensor Networks for Energy
Consumption Minimization by Deep Reinforcement Learning [4.273341750394231]
Unmanned aerial vehicles (UAVs) have emerged as a promising solution for data collection of wireless sensor networks (WSNs)
We aim to minimize the total energy consumption of the UAV-WSN system in a complete round of data collection.
We propose a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-A*), which can efficiently learn from experiences of the UAV trajectory policy.
arXiv Detail & Related papers (2021-08-01T03:02:11Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we reformulate the multi-UAV trajectory optimization problem with collision avoidance and wireless connectivity constraints.
We propose a decentralized deep reinforcement learning approach to solve the problem.
arXiv Detail & Related papers (2021-04-03T22:22:20Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.